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El zorro cangrejero (Cerdocyon thous) se distribuye desde el norte de Colombia y Venezuela, a través de gran parte de Brasil, el
este de Bolivia, Paraguay y Uruguay, hasta el norte de Argentina. Este individuo fue fotografiado en el municipio de Salamina,
en el departamento de Caldas, Colombia. Fotografia de Jeremy Dominguez.

Issue cover

The crab-eating fox (Cerdocyon thous) ranges from northern Colombia and Venezuela through much of Brazil,

eastern Bolivia, Paraguay, Uruguay, and into northern Argentina. This individual was photographed in the municipality
of Salamina, in the Department of Caldas, Colombia. Photograph by Jeremy Dominguez.

Nuestro logo“Ozomatli”
El nombre de “Ozomatli” proviene del ndhuatl, se refiere al simbolo astroldgico del mono en el calendario azteca, asi como al dios

de la danza y del fuego. Se relaciona con la alegria, la danza, el canto, las habilidades. El signo decimoprimero en la cosmogonia
mexica, “Ozomatli’, es una representacion pictérica del mono araia (Ateles geoffroyi). La especie de primate de mas amplia
distribucion en México” Es habitante de los bosques, sobre todo de los que estdn por donde sale el sol en Andhuac. Tiene el
dorso pequeiio, es barrigudo y su cola, que a veces se enrosca, es larga. Sus manos y sus pies parecen de hombre; también sus
unas. Los Ozomatin gritan y silban y hacen viajes a la gente, arrojan piedras y palos. Su cara es casi como la de una persona,
pero tienen mucho pelo.”
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Desde tiempos ancestrales los mamiferos han sido
objeto de fascinacién para el ser humano. Ya en épocas
pleistocénicas, los primeros habitantes del Continente
Americano utilizaban tacticas de sigilo y aproximacion para
lograr una caceria exitosa. Estos eventos de caza quedaron
plasmados en numerosas pinturas rupestres encontradas
en cuevas, en donde la fauna de mamiferos era abundante
y diversa. Hoy en dia los mastozodlogos conservamos esa
curiosidad innata por examinar y rastrear a los mamiferos;
sin embargo, nuestro objetivo no es la caceria de
subsistencia, sino contribuir con nuevos datos a la ciencia
mediante el uso de diversas técnicas y herramientas.
Debido a su naturaleza, los mamiferos suelen ser animales
esquivos y de habitos nocturnos, por lo que su estudio
en campo presenta desafios importantes. Esta dificultad
ha llevado a los cientificos a ingenidrselas desarrollando
nuevos métodos y herramientas que permitan monitorear
a estos animales de manera mas eficaz.

El monitoreo de mamiferos ha sido posible gracias a la
variedad de instrumentos utilizados para localizaren campo
a las diferentes especies de este grupo de vertebrados.
Existen métodos tradicionales indirectos, mediante la
identificaciéon de sus rastros (huellas y heces); métodos
basados en ecolocalizadores para mamiferos voladores
como murciélagos; y métodos directos que implican la
captura de individuos vivos, como las trampas Sherman
para pequefos mamiferos, principalmente roedores,
trampas Tomahawk para mamiferos medianos, trampas
con cepos para mamiferos grandes, redes de niebla,
redes de arpa y el uso de la radiotelemetria, entre muchos
otros. Estas técnicas han aportado informacién valiosa
y han permitido describir nuevas especies, determinar
abundancias, establecer indices de diversidad, delimitar
areas de distribucion y realizar colectas cientificas, entre
otros usos. Sin embargo, el disefio de algunas de estas
metodologias ha sido considerado demasiado invasivo
para los individuos capturados, ya que en muchos casos
implicaba el sacrificio del animal.

Actualmente los avances cientificos y tecnoldgicos han

DOI: 10.12933/therya.2026.6254 ISSN 2007-3364
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El monitoreo de mamiferos

Figura.1. Zorrillo atrapado en trampa Tomahawk para monitoreo de especies en
vida silvestre (Foto Alberto Gonzélez).

© 2026 Asociacion Mexicana de Mastozoologia, www.mastozoologiamexicana.org



http://www.mastozoologiamexicana.org

EDITORIAL

Figura 2. Colocacion de redes de niebla para la captura de murciélagos en bajo puente (Foto César Guzman)

permitido incluir nuevas herramientas en el estudio de
los mamiferos, revolucionando en cierta forma la manera
de colectar informacién. Gracias a pequefas muestras
ambientales, colectadas de forma indirecta y de manera no
invasiva, es posible tener una buena aproximacién de las
especies que habitan una zona en particular. Una de estas
nuevas técnicas es el ADN ambiental (eDNA), que permite
detectar especies a partir de pequenas particulas celulares
depositadas en el medio ambiente y capturadas mediante
bombas de vacio y membranas de filtracién. Esta novedosa
técnica ha permitido tener aproximaciones muy certeras
sobre el monitoreo de los mamiferos en particular y de
otros organismos en general.

Otra herramienta que ha resultado muy efectiva en el
monitoreo de mamiferos son las cdmaras trampa, las cuales
son colocadas en lugares precisos o de forma sistematica,
con separaciones de entre 300 y 1000 m, dependiendo del
objetivo del estudio. Estas camaras permitien documentar,
mediante registros fotograficos y video tomados durante
largos periodos, el paso de los animales por un sitio
determinado, ademas de poder determinar sus patrones de
actividad. Esta técnica ha permitido registrar la presencia
de grandes mamiferos cuya deteccién antes resultaba casi
imposible debido su comportamiento elusivo, e incluso ha
contribuido al redescubrimiento de especies que se creian
extintas en vida silvestre. Es un método ampliamente
utilizado para estudiar comunidades de mamiferos, sus
interacciones, uso del habitat, variaciones temporales y su
presencia en diversos ecosistemas y regiones.

2 THERYAVol. 17 (1): 1-2

Los mastozodlogos han llegado a un punto en el
que deben combinar las metodologias tradicionales de
monitoreo con las nuevas herramientas, lo que permite un
enfoque mas integral, y al mismo tiempo, mas respetuoso
con el medio ambiente y su fauna. Esto se debe a que
muchas de las herramientas recientes no son invasivas
y resultan eficientes y objetivas, permitiendo responder
preguntas muy concretas sobre los mamiferos de una
region determinada. No obstante, aun existen obstaculos
que limitan la accesibilidad de estas nuevas herramientas
tecnoldgicas para todos los cientificos, un ejemplo es el
potencial de analisis de una gran cantidad de datos que se
generan a través de rutas bioinformaticas, o bien los costos
asociados para su implementacion. Este nuevo enfoque
estd abriendo nuevas posibilidades sin precedentes para el
estudio de los mamiferos, de una manera mas ética y con
mayor capacidad para responder un amplio nimero de
preguntas de ambito ecoldgico, genético, conductual y de
otras areas del conocimiento.

Jorae ORrTEGA'®
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Zoologia, Escuela Nacional de Ciencias Bioldgicas,
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Diet diversity of four herbivores in Coahuila, Mexico
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Understanding the annual and seasonal composition of herbivore diets is essential for effective population management and habitat
conservation. This study aimed to evaluate the annual and seasonal dietary composition and diversity of four wild herbivores in a desert
scrubland of Coahuila, Mexico, during the dry season (October 2018 and February 2019) and the wet season (May and August 2019). The
research was conducted at the Rancho San Juan Wildlife Management Unit (UMA) using captive populations of desert bighorn sheep (Ovis
canadensis mexicana), aoudad (Ammotragus lervia), white-tailed deer (Odocoileus virginianus texanus), and mule deer (O. hemionus). A total of
280 fecal group samples per species (140 per season) were collected and analyzed using microhistological techniques. Dietary diversity was
estimated using Hill numbers by season. Differences in dietary composition were assessed with the Kruskal-Wallis test and principal component
analysis. Aoudad exhibited the highest dietary diversity (64 species), followed by desert bighorn sheep (50), white-tailed deer (49), and mule
deer (43). Shrub species predominated in all diets. No significant differences were detected between seasons, although grouping patterns were
observed in plant occurrence frequencies. Principal component analysis indicated that 55% of the consumed plant species constituted the
common dietary base of the four herbivores. White-tailed deer and mule deer, as browsing ruminants, showed greater selectivity for shrubs,
while mule deer stood out for including lechuguilla (Agave lechuguilla), a dominant species in the rosetophyllous desert scrub. These findings
underscore the importance of incorporating dietary diversity into wildlife management strategies and highlight the need for long-term studies
to better understand patterns of plant resource use in arid ecosystems.

Key words: Acacia rigidula, agaves, management, microphyllous desert scrub, rosetophyllous desert scrub, Opuntia engelmannii.

Comprender la composicion anual y estacional de las dietas de los herbivoros es esencial para una gestion efectiva de las poblacionesy la
conservacion del habitat. El objetivo de este estudio fue evaluar la composicién y diversidad dietaria anual y estacional de cuatro herbivoros
silvestres en un matorral desértico de Coahuila, México, durante la estacion seca (octubre de 2018 y febrero de 2019) y la estacion humeda
(mayo y agosto de 2019). La investigacion se llevé a cabo en la Unidad de Manejo para la Conservacion de la Vida Silvestre (UMA) Rancho San
Juan, utilizando poblaciones en cautiverio de borrego cimarrén del desierto (Ovis canadensis mexicana), arrui (Ammotragus lervia), venado cola
blanca (Odocoileus virginianus texanus) y venado bura (O. hemionus). Se recolectaron y analizaron un total de 280 muestras de grupos fecales
por especie (140 por estacion) mediante técnicas microhistoldgicas. La diversidad dietaria se estimé por estacion utilizando los niUmeros de
Hill. Las diferencias en la composicion de la dieta se evaluaron mediante la prueba de Kruskal-Wallis y un andlisis de componentes principales.
El arrui presenté la mayor diversidad dietaria (64 especies), seguido por el borrego cimarrén del desierto (50), el venado cola blanca (49) y
el venado bura (43). Las especies arbustivas predominaron en todas las dietas. No se detectaron diferencias significativas entre estaciones,
aungue se observaron patrones de agrupamiento en las frecuencias de ocurrencia de las plantas. El andlisis de componentes principales indicé
que el 55 % de las especies vegetales consumidas constituyeron la base alimentaria comun de los cuatro herbivoros. El venado cola blanca y
el venado bura, como rumiantes ramoneadores, mostraron una mayor selectividad por los arbustos, mientras que el venado bura destacé por
incluir la lechuguilla (Agave lechuguilla), una especie dominante en el matorral desértico rosetdfilo. Estos hallazgos subrayan la importancia
de incorporar la diversidad dietaria en las estrategias de manejo de vida silvestre y resaltan la necesidad de realizar estudios a largo plazo para
comprender mejor los patrones de uso de los recursos vegetales en los ecosistemas aridos.

Palabras clave: Acacia rigidula, agaves, manejo, matorral desértico micréfilo, matorral desértico rosetéfilo, Opuntia engelmannii.
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DIET OF FOUR HERBIVORES

Coahuila, Mexico, is home to native species of large
herbivores, which play a central role in the nutrient
dynamics of ecosystems by participatingin plant phenology
through herbivory, contributing to soil compaction and
nutrient supply (Gastelum-Mendoza et al. 2019), and
constituting a source of food for natural predators (Rosas-
Rosas et al. 2003). The white-tailed deer (Odocoileus
virginianus texanus) is one of the 14 subspecies recorded
in Mexico, distributed throughout the country, except for
the Baja California peninsula (Mandujano et al. 2010; De la
Rosa-Reyna et al. 2012). This species is mainly associated
with the desert shrublands of northeastern Mexico and
the southern United States of America; it represents an
alternative for the development of the rural economy and
livestock production through sustainable hunting (Valdez
et al. 2006; Lozano-Cavazos et al. 2020).

Similarly, the mule deer (Odocoileus hemionus eremicus),
whose distribution area in Mexico mainly includes the
Sonoran Desert, is a species adapted to arid environments
in northern Mexico, thriving in desert shrublands and
mountain ranges (Weber and Gonzalez 2003). This
subspecies plays an important ecological role as a browser,
influencing the structure and composition of vegetation
(Krausman et al. 1999). In addition, its hunting value has
supported its inclusion in intensive management programs
in Coahuila (Veldzquez et al. 2010), and its adaptation to
desert shrublands in northeast Mexico is considered viable
due to the similarity in habitat conditions (Olivas-Sanchez
etal. 2018b).

Additionally, some mountain ranges in Coahuila were
part of the natural distribution of bighorn sheep (Ovis
canadensis) until the mid-nineteenth century, when their
populations were extirpated from northeastern Mexico
by poaching and disease transmission from domestic
livestock (O’Farrill et al. 2019). In this regard, the Mexican
Official Standard NOM-059-SEMARNAT-2010 has listed
O. canadensis as Special Protection (Pr; DOF 2019), and
reintroduction programs have been promoted in regions
such as the Sierra Maderas del Carmen and private land
in the state of Coahuila (Espinosa and Contreras-Balderas
2010). However, the presence and rapid expansion of
Barbary sheep (Ammotragus lervia), an exotic bovine native
to North Africa, represents a threat to wildlife diversity in
northern Mexico, as it competes directly for food and space
with the species mentioned above, in addition to being a
carrier and vector of parasites and diseases (Ben Mimoun
and Nouira 2013; 2015; Gastelum-Mendoza et al. 2023).

Managing these herbivores requires knowledge about
the plant species that are consumed as food (Gastelum-
Mendoza et al. 2019), as it provides key information on
herbivory pressure, which can adversely affect the dispersal
and diversity of plant species, in addition to being useful
for estimating carrying capacity (Serna-Lagunes et al.
2024), assessing the nutritional status of populations, and
establishing priority areas for conservation (Saucedo-Uuh
et al. 2024). In this regard, several studies in Mexico and
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the United States indicate that the white-tailed deer is a
selective browser, feeding preferentially on twigs of shrubs
and some herbaceous plants (Fulbright and Ortega-Santos
2007; Lozano-Cavazos et al. 2020). In contrast, mule deer
show a greater capacity to adapt to changes in habitat
conditions, modifying their diet according to seasonal
forage availability (Olivas-Sédnchez et al. 2018b). On the
other hand, studies on bighorn sheep and Barbary sheep
have documented that both species have opportunistic
feeding habits (Ben Mimoun and Nouira 2015; Gastelum-
Mendoza et al. 2021). In addition, habitat factors, such as
topography and escape vegetation cover, are key drivers of
their distribution and population development. Information
available on the diet of exotic species of herbivores in
Mexico is currently scarce (Olguin-Hernandez et al. 2017).

Therefore, the objective of this study was to identify
and compare the composition and diversity of the
seasonal diet of bighorn sheep, Barbary sheep, white-
tailed deer, and mule deer in north Coahuila. The results
obtained are relevant to identifying potential areas for the
reintroduction and management of these species in desert
scrub ecosystems in northeastern Mexico.

Materials and methods
Description of the study area. The study was carried out
at the Rancho San Juan Unit for Wildlife Conservation,
Management, and Sustainable Use (Unidad para la
Conservacién, Manejo y Aprovechamiento Sustentable
de la Vida Silvestre; UMA, in Spanish) (26°49'31.11" N,
101°01'57.77" W), located in the municipality of Monclova,
state of Coahuila de Zaragoza, Mexico (Figure 1). Rancho
San Juan includes four areas dedicated to intensive wildlife
management. The first, with an area of 450 ha, is home to
70 bighorn sheep from Tiburén Island, Sonora. The second
area, comprising 1020 ha, is dedicated to the management
of 550 Texas white-tailed deer; the third, with an extension
of 200 ha, is intended for the conservation of 20 mule deer
from the state of Sonora. Additionally, Sierra Las Hormigas,
a mountainous area of 1200 ha, is used to manage
approximately 120 Barbary sheep in confinement. These
four populations are isolated from each other. In addition, in
the intensive management units for white-tailed deer, mule
deer, and bighorn sheep, alfalfa food supplementation is
carried out during the driest months of the year (July and
August) to mitigate the effects of natural forage shortages.
In the areas of intensive management of the two deer
species, microphyllous desert shrubland predominates,
characterized by shrubs of the genus Acacia and cacti of the
genus Opuntia, as well as extensive areas of open grasslands.
In these areas, 46 species of plants have been reported,
some of which have high forage value, such as Acacia
berlandieri and A. rigidula, as well as others that provide
thermal protection for cervids, such as Cenchrus ciliaris and
Yucca filifera (Gastelum-Mendoza et al. 2020). On the other
hand, the management areas of the two species of bovids
show the dominance of rosetophyllous desert shrublands,
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Figure 1. Location and delimitation of reserves for the management of wild herbivores in Rancho San Juan UMA, Coahuila, Mexico.

with low shrubs and abundant succulent species such as
lechuguilla (Agave lechuguilla), guapilla (Hechtia glomerata),
and candelilla (Euphorbia antisyphilitica; Miranda and
Herndndez 1963; Gastelum-Mendoza et al. 2019).

The local climate is semi-arid (BS), with a mean annual
temperature of 21 °C, which can exceed 40 °C in summer
and drop below 0 °C in winter. Annual precipitation ranges
between 200 mm and 900 mm (Garcia 1988).

Analysis of the composition and diversity of diets. The
plant species that make up the annual and seasonal diet
of bighorn sheep, Barbary sheep, white-tailed deer, and
mule deer were identified using the microhistological
technique. This methodology allows the identification and
quantification of plant epidermal structures in fresh feces
through microscopic analysis (Pefia and Habib 1980). To
this end, fresh feces from the four herbivore species studied
were collected during the dry season (October 2018 and
February 2019) and the wet season (May and August
2019). The samples were placed in paper bags, labeled,
and transferred to the Wildlife Laboratory of the Faculty of
Forestry Sciences of the Autonomous University of Nuevo
Ledn, Nuevo Ledn, Mexico. These samples were dried in a
120 VAC, 60 Hz stainless steel oven at 75 °C for 48 hours.
Once dried, the samples were sorted by time of year and

ground in a Wiley mill using a No. 10 sieve (1.70 mm mesh
opening). A composite sample was obtained from each
seasonal group, clarified with sodium hypochlorite, and
fixed on slides following the protocol described by Pefa
and Habib (1980). A total of 80 slides were mounted (10 per
season for each species), and 800 microscope fields (10 per
slide) were analyzed using an OMAX M82ES 40X-2000X"
microscope with a 10X objective and a 10X ocular lens.

To identify and quantify plant cell fragments in fecal
samples, a reference catalog was prepared consisting of
photomicrographs of characteristic epidermal structures
— trichomes, stomata, silica cells, and crystals, among
others — corresponding to 141 plant species present in
the study area. These were classified according to their
biological form (shrub, herbaceous, grass, and succulent)
and by family and species. The plant samples underwent
the same drying, rinsing, and grinding procedures as fecal
samples to ensure a comparison of the cell structures.

Numerical analysis. The diet composition of each
herbivore species was determined by the frequency of each
plant species in fecal samples, following the methodology
of Fracker and Brischle (1944). The diversity of the diet for
the four herbivore species was compared by estimating the
true diversity profile based on Hill numbers (Hill 1973). This
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Figure 2. Variation in diet composition according to season, biological form of the forage consumed, and species of herbivores in Rancho San Juan UMA, Coahuila, Mexico (values expressed

in relative frequency).

approach allows for the construction of diversity curves based
on species richness and the presence/absence of the species
recorded in the samplings. This analysis also yields sample
coverage and sample size through inter- and extrapolations
(along with 95% confidence intervals) calculated from 1000
bootstrap replicates, using the online platform of the iINEXT
software (Chao et al. 2016). The comparison between species
was performed considering the effective number of species
for the orders g0 (species richness), q1 (exponential of the
Shannon index), and g2 (inverse of the Simpson index) (Chao
et al. 2014). Differences (a < 0.05) between dietary diversity
profiles were assumed when the confidence intervals did not
overlap (Cumming et al. 2007).

Food similarity between the four species was evaluated
by calculating the Jaccard and Sorensen indices (based on
the presence or absence of plant the species consumed),

as well as the Horn, Morisita-Horn, and Bray-Curtis indices
(based on the relative abundance of the species consumed)
(Chao et al. 2000; Pan et al. 2009) using the SpadeR
software available online (Chao et al. 2015). In addition,
the completeness of the sampling between species was
compared using the sample coverage estimator, which
indicates the degree of completeness of the dietary
inventory. Coverage close to 100 % suggests that the
sampling effort and technique were sufficient to adequately
characterize the diet (Chao and Jost 2012), supporting
valid comparisons between assemblages with a similar
completeness level (Magurran and Henderson 2010).

Diets of the herbivore species were compared using an
analysis based on frequency density (a < 0.05). The similarity
between diets was assessed using a cluster analysis, with
Euclidean distance as a measure of similarity. Additionally,

Table 1. Diversity indicators according to Hill numbers for four species of herbivores living in Rancho San Juan UMA, Coahuila, Mexico.

Indicators Bighorn sheep Barbary sheep White-tailed deer Mule deer
Sample size 394 409 399 400
qo0 50 64 49 43
ql 24 28 27 26
q2 14 17 19 20
Sample coverage 0.97 0.94 0.97 0.97
Percentage of sample coverage 97 % 94 % 97 % 97 %

6 THERYAVol. 17 (1): 3-16



Lozano-Cavazos et al.

Figure 3. Comparison of the relative frequency of plant species in the diet of four wild herbivores living in Rancho San Juan UMA, Coahuila, Mexico, using the nonparametric Kruskal-

Wallis test.

the proportion of consumed plant species shared by
the four herbivore species was analyzed by applying the
Whittaker index (a < 0.05).

Likewise, nonparametric statistical tests were applied
to evaluate differences in diet composition between
species and times of the year. These included the Kruskal-
Wallis test (a < 0.05) and the paired Mann-Whitney test
(a < 0.05). A principal component analysis (PCA) was
performed using the frequencies of consumption of plant
species as independent variables and the diversity of plants
consumed as dependent variables. This analysis allowed for
the identification of correlations between variables through
principal components, which were represented in a three-
dimensional space (factorial planes). The percentages of
variance explained by each principal component were
calculated. The statistical analyses were performed in Past
3.0 and XLSTAT.

Results

Composition and diversity of diets. A total of 280 fecal samples
were collected per species, evenly distributed between
the two seasons of the year (140 per season). The sample

coverage was greater than 90% for the four species of
herbivores, which indicates a representative sample (Table
1). The richness of plant species varied between herbivore
species, ranging from 43 to 64.The diet of the bighorn sheep
included 50 plant species (q0): 28 shrubs, seven herbs, 11
grasses, and four succulents. Annually, the most consumed
species were woody crinklemat (Tiquilia canescens; 17.75 %),
Torrey’s croton (Croton torreyanus; 10.89 %), and rabbit
cactus (Opuntia microdasys; 9.51 %; Table 2). Regarding
the seasonal contribution of biological forms in the diet of
bighorn sheep, shrub species predominated throughout
the year (Figure 2). No differences were found between the
consumption of the different biological forms and the time
of year (Figure 3). However, a higher consumption of shrubs
and herbaceous plants was observed during the dry season
(41.54 % and 32.59 %, respectively), while the consumption
of grasses and succulents was higher in the wet season
(17.74 % and 20.57 %, respectively; Figure 2).

Barbary sheep consumed 64 species (q0), including 34
shrubs, 12 herbs, 15 grasses, and three succulents. Tiquilia
canescens (11.28 %), chaparro prieto (Acacia rigidula; 10.6 %),
and desert prickly pear (Opuntia engelmannii; 9.96 %),
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Table 2. Seasonal composition of the diet of bighorn sheep, Barbary sheep, white-tailed deer, and mule deer living in Rancho San Juan UMA, Coahuila, Mexico, expressed in
percentage of the consumption values.

Ovis canadensis mexicana Ammotrgus lervia Odocoileus virginianus texanus Odocoileus hemionus eremicus
Species Wet Dry Wet Dry Wet Dry Wet Dry
Abutilon wrightii 4.16 1.03 1.47 1.96 1.64
Acacia berlandieri 0.98 2.58 0.29 2.88 1.04
Acacia farnesiana 235 5.12 0.26 1.14 043 0.33
Acacia rigidula 1.00 9.59 11.60 11.93 5.73 7.24 2.26
Acourtia runcinata 0.25 0.14
Agave lechuguilla 0.62 0.44 12.65 10.81
Agave sp. 2.54 2.89
Allionia incarnata 1.86 0.53 0.22 0.99 4.85
Aloysia macrostachya 0.13 2.80 2.96 0.37 1.41 0.44 2.16 135
Aloysia wrightii 1.06 0.15
Ambrosia dumosa 0.66 1.33 0.13 2.01 0.14 411
Aristida adscensionis 0.26 0.65 0.39 0.37 0.57 0.77
Aristida adscensionis 1.35 0.63
Aristida purpurea 0.78 1.90 0.65 3.04 0.83 2.07
Astrolepis integrifolia 2.71 0.88 4.87 0.22
Baccharis glutinosa 0.81
Baccharis texana 1.11 0.65
Bothriochloa laguroides 0.95
Bothriochloa saccharoides 0.62
Bouteloua curtipendula 2.25 1.29 0.98 0.74 2.50
Bouteloua eriopoda 0.25 2.68 0.13 0.37
Bouteloua gracilis 0.13 497 3.28
Bouteloua hirsuta 0.13 0.1 0.13 1.98 0.28 177
Bouteloua sp. 0.74 141
Calliandra sp. 3.26
Casimiroa edulis 0.99
Castela texana 0.33 0.13 0.44 0.91
Celtis pallida 0.73 0.72
Cenchrus ciliaris 3.60 4.88 2.58 6.12 3.80 2.10 2.93 8.48
Chamaecrista greggii 0.11 0.74
Chilopsis linearis 0.42
Cordia parvifolia 0.26 0.19 2.19 1.73
Croton dioicus 3.07 223
Croton pottsii 0.30
Croton punctatus 0.10 0.65 1.10 4.66
Croton sp. 0.15
Croton torreyanus 9.22 12.57 0.90 4,94 0.99 7.60
Cynodon dactylon 1.93 1.05
Cynodon dactylon 0.42 0.34
Dalea aurea 0.90 0.52 0.78 1.02
Dalea bicolor 1.15 0.84 0.44 2.42 1.44
Dalea greggii 1.11
Diospyros texana 0.29 037
Ephedra pedunculata 0.55 0.12 4.05
Ephedra trifurca 0.99 0.59
Erioneuron pulchellum 7.55 0.78 10.55 6.34 12.69 0.56
Euphorbia antisyphilitica 0.50 1.31 1.10 2.22 471 433 135
Evolvulus alsinoides 5.22 3.22 0.57 0.44
Eysenhardtia texana 3.47 0.95 0.65 0.77 7.99 6.55
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Ferocactus sp.

Flourensia cernua

Forestiera angustifolia 0.26 0.11 1.60
Gochnatia hypoleuca 0.50 1.06 3.20
Guaiacum angustifolium 1.18 1.39
Gymnosperma glutinosum 0.13

Hechtia glomerata

Heteropogon contortus 0.89 1.94 0.52
Hilaria mutica 0.63

Hymenoxys odorata 0.13

Jatropha dioica
Karwinskia humboldtiana 1.09

Koeberlinia spinosa

Krameria erecta 0.13 0.95 0.13
Lantana camara 0.13
Larrea tridentata 0.37 0.33 139
Lesquerella fendleri 0.37
Leucophyllum frutescens 1.85 1.93 2.59
Lippia graveolens 0.50

Medicago sativa 6.52 6.86 6.94
Mimosa zygophylla 1.40 341 0.49
Opuntia engelmannii 4.45 0.42 10.29
Opuntia leptocaulis 2.23 1.66 1.11
Opuntia microdasys 12.28 6.75 0.52
Panicum hallii 0.13
Parthenium argentatum 1.03
Parthenium hysterophorus 0.89 2.08

Parthenium incanum 0.00 1.97

Parthenium sp.
Paspalum notatum

Phaulothamnus spinescens

Physaria fendleri

Prosopis glandulosa 0.50 2.10

Salvia coccinea

Setaria leucopila 0.11

Sidneya tenuifolia 1.85 2.22

Solanum elaeagnifolium 0.10

Solanum nigrum 037

Telosiphonia macrosiphon

Tiquilia canescens 18.45 17.05 9.93
Tridens muticus
Viguiera stenoloba 0.13

Wedelia texana
Yucca filifera

Ziziphus obtusifolia

Lozano-Cavazos et al.

1.79 0.41
4.85 4.07
0.15 0.83 2.29 293 2.69
0.35 0.32
5.15 033 4.00 3.99
0.15 0.11
1.08 0.63
2.39 3.84 034
0.30 0.29 4.26 535
0.15 0.15 0.22
0.15 435 6.27
0.1 0.15 0.12 3.63 1.04
0.50
0.15 1.00 0.11
0.32
0.26 0.43 0.68
0.15 1.25 3.52 1.82 1.28
0.15 0.29 2.84 6.62
11.79 3.52 3.02
0.55 2.66 2.86
9.63 11.51 15.15 7.95 8.52
0.88 4.86 5.20 293 3.59
1.10 0.23 0.73
2.68
0.85 0.15 0.37
1.89
0.28 1.15
248 4.36
0.63
0.55 1.58
6.33 291 542 5.86
0.36
0.44
0.15 0.42 0.45
0.1
0.81
12,63 1.15 3.1
0.11
0.63
0.32
343 1.09

were the most consumed species. In addition, Barbary
sheep consumed mostly shrubs throughout the year
(Table 2), although with a higher consumption in the wet
season (41.2 %). Herbaceous plants and grasses were more
common in the diet during the dry season (32.17 % and
25.39 %, respectively). Succulents were equally consumed
in both seasons (Figure 2).

The diet of white-tailed deer consisted of 49 plant

species (q0), including 27 shrubs, ten herbs, nine grasses,
and three succulents. Opuntia engelmanni (13.33 %), A.
rigidula (8.83 %), and Texas kidneywood (Eysenhardtia
texana; 7.27 %) were the dominant plant species in the diet
throughout the year (Table 2). Shrub species represented
more than one-half of food consumption during the dry
season (50.47 %). Also, herbs (18.16 %) and succulents
(21.53 %) were consumed more commonly in the dry
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season, while grasses were consumed mainly during the
wet season (22.7 %; Figure 2).

The diet of mule deer consisted of 43 plant species (q0),
of which 25 were shrubs, four herbs, seven grasses, and
seven succulents. The most representative plant species
consumed all year round were Agave lechuguilla (11.73 %),
0. engelmannii (8.23 %), and Cenchrus ciliaris (5.7 %; Table 2).
The consumption of shrub species was predominant
throughout the year, with a higher incidence during the wet
season (52.83 %). Succulents also contributed significantly
at this time of the year, accounting for 30 % of the diet. In
contrast, grasses were consumed mainly during the dry
season (26 %), while herbs made a low proportion of the
diet throughout the year (Figure 2).

10 THERYAVol.17(1):3-16

Figure 4. Analysis of the diversity of consumed species; A, Rarefaction curve
and extrapolation for the comparison of dietary diversity; B, Rarefaction curve and
extrapolation of the diversity of consumed species as a function of the sampling
coverage; C, Rarefaction curve and extrapolation of the number of consumed species
according to the sampling coverage; D, Comparison of the effective number of species
of order q0 (analog of species richness), g1 (exponential of the Shannon index), and g2
(inverse of the Simpson index); E, group comparison of the diversity of plants consumed
by four ungulates.

According to the true diversity profile based on Hill
numbers, Barbary sheep showed a higher diversity of
species consumed compared to the other three herbivore
species, which exhibited a relatively similar dietary
composition (Table 1). Extrapolations suggest that, given
the increased availability of plant species in the ecosystem,
herbivores would be able to incorporate a diversity of
plants proportional to that of the habitat (Figure 4). When
comparing the diversity of the diet between the four
species, we observed that the observed diversity exceeded
the expected one (Figure 4E), with significant differences
(P < 0.05) in the composition of the plants consumed.
In particular, Barbary sheep showed the highest species
richness in their diet (q0). However, in terms of the number
of common species (q1) and the number of dominant
species (q2) in the diet, no significant differences were
observed between the species analyzed (Figure 4D).

Similarity of diet composition and diversity. According to
the results of the Kruskal-Wallis test (X*=2.48, df=3,P=0.68),
no statistically significant differences were observed in the
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Table 3. Significance values of the paired Mann-Whitney test (a < 0.05) according to the diet composition of the herbivorous species and the seasons of the year.

Species - season of the year Bighorn sheep - Bighornsheep- Barbarysheep- Barbary sheep - White-tailed White-tailed Mule deer - wet

wet season dry season wet season dry season deer - wet deer - dry season
season season

Bighorn sheep - dry season 0.63

Barbary sheep - wet season 0.36 0.61

Barbary sheep - dry season 0.37 0.63 0.97

White-tailed deer — wet season 0.73 0.89 0.61 0.55

White-tailed deer - dry season 0.89 0.82 043 0.45 0.87

Mule deer - wet season 0.6 0.36 0.15 0.14 0.36 0.48

Mule deer - dry season 0.84 0.47 0.27 0.27 0.62 0.69 0.77

Figure 5. Principal Component Analysis (PCA) of the seasonal composition of the
diet of four wild herbivores at Rancho San Juan UMA, Coahuila, Mexico.

annual diet composition between the herbivore species
studied (Figure 3). Similarly, no significant differences were
found in the consumption of the different biological forms
of forage between seasons (X* = 3.04, df = 7, P = 0.82).
Furthermore, the results of the Mann-Whitney paired test
indicated that there are no differences in diet composition
between herbivore species or between seasons of the year
(Table 3).The cluster analysis indicated two groups based on
the similarity of the diets (Figure 5). The first group included
the seasonal diet composition of white-tailed deer, bighorn
sheep, and Barbary sheep; the second included the diet of
mule deer in both periods (Figure 6).

In the PCA (Figure 5), PC1 and PC2 explained 55.20 %
and 25.5 % of the variance, respectively; together, the
first two components accounted for 80 % of the variance.
This variation is explained by the correlation between the
diversity of plant species consumed by bighorn sheep and
mule deer, which are associated with PC3.This position in the
two-dimensional plane highlights the difference with the
white-tailed deer and Barbary sheep, which correlate in PC2,
suggesting the similarity in the diet of these two species.

The Whittaker comparison analysis (Table 4) indicated
the proportion of plant species consumed by the four

Table 4. Whittaker’s comparison analysis to determine the plant species consumed
by ungulates (proportion of species shared).

Bighorn Barbary White-tailed Mule deer
sheep sheep deer
Bighorn sheep
Barbary sheep 0.23
White-tailed deer 0.29 0.29
Mule deer 0.59 0.61 0.57

ungulates, with a greater similarity of species consumed
between Barbary sheep and mule deer (61 %), mule deer
and bighorn sheep (59 %), white-tailed deer and mule deer
(57 %), and white-tailed deer, bighorn sheep, and Barbary
sheep (29 %).

Discussion

Smaller herbivores select a higher-quality diet due to their
relatively high nutritional requirements (Ramirez et al. 1997).
This preference is related to a distinctive characteristic of small
ruminants classified as browsers, such as white-tailed deer
and mule deer, which have morphological adaptations in the
digestive tract that allow them to be more selective regarding
the species and parts of plants they consume (Ramirez-Lozano
2004). In contrast, ruminants classified as grazers, such as
bighorn sheep and Barbary sheep, have larger molars and
digestive tracts, allowing them to digest a greater diversity of
plant species more efficiently, especially grasses with a high
fiber content and lower nutritional quality (Guerrero-Cardenas
et al. 2018). This explains why shrub browsing was the most
important food component for white-tailed deer and mule
deer, while the percentages of shrubs in the diet of the two
bovid species were lower (Figure 2).

Each of the four herbivore species exhibits evolutionary
adaptations that influence their patterns of food use
and selection. For example, the habitat requirements of
bighorn sheep are strongly conditioned by topography;
this species depends on areas with canyons, steep slopes,
and vegetation cover that facilitates the detection of
predators (Tarango et al. 2002). This habitat component
is even more relevant than food availability, as bighorn
sheep are considered opportunistic foragers that can feed
on a wide variety of plants (Gastelum-Mendoza et al. 2021;
Méndez-Rosas et al. 2025). For its part, Barbary sheep, an
exotic species in Mexico, shows a high plasticity in habitat
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Figure 6. Dendrogram of dissimilarity in the seasonal diet composition of four wild herbivores at the Rancho San Juan UMA, Coahuila, Mexico.

use and food selection (Ben Mimoun and Nouira 2013).
In Texas, USA, one of the few studies on this topic reveals
that in the presence of white-tailed deer, Barbary sheep
avoid browsing shrubs to prevent competition (Ramsey
and Andereg 1972). This strategy suggests that, despite the
high dietary similarity between white-tailed deer, bighorn
sheep, and Barbary sheep (Figure 3), the habitat resources
available for these species to compete for are different. In
particular, competition could be expressed in the use and
selection of escape terrain or water sources. Although
common plant species were identified in the diet of the four
herbivore species studied, they were not consumed in the
same proportions. In particular, A. rigidula accounted for a
significant percentage of the annual diet of Barbary sheep,
but only contributed 0.5 % of the diet of bighorn sheep
(Table 2), and few species accounted for high consumption
percentages (Figure 3).

From a habitat management perspective, forage species
for wild herbivores are classified as declining when their
availability decreases in response to herbivory pressure
(Fulbright and Ortega-Santos 2007). In the case of bovids, T.
canescens, an annual herbaceous species, was classified as a
declining species because it was the most representative in
the annual diet of bighorn and Barbary sheep, with 17.75 %
and 11.27 %, respectively. However, specific differences in
diet composition were observed between the two species.
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A high percentage of occurrence of C. torreyanus was found
in the annual diet of bighorn sheep (10.9 %), but not in the
diet of Barbary sheep (2.9 %; P < 0.05). In contrast, A. rigidula
was consumed in a higher proportion by Barbary sheep
(10.6 %) compared to bighorn sheep (0.5 %; P < 0.05). As
for cervids, both species showed a high consumption of O.
engelmannii (Table 2). However, A. lechuguilla, a dominant
succulent plant in the desert shrublands of northeastern
Mexico (Alanis-Rodriguez et al. 2015), was consumed in a
high proportion (11.7 %) only by mule deer. On the other
hand, low woollygrass (Erioneuron pulchellum) was recorded
exclusively in the diet of white-tailed deer (6.6 %).

Studies on forage competition are complex, since this
ecological phenomenon occurs when multiple species or
individuals simultaneously use aresource whose availability is
insufficient to meet the minimum survival and development
requirements of the individuals or populations involved
(Olguin-Herndndez et al. 2017). Under this definition,
similarity in diet composition is considered a primary
indicator of interspecific competition for food. In Mexico,
studies on food competition between wild herbivores are
scarce. In La Michilia Biosphere Reserve, Durango, studies
on the long-term feeding habits of white-tailed deer and
mule deer concluded that there is no significant competition
in forage use between the two species (Gallina and Ezcurra
1981; Gallina 1993). For their part, Olguin-Hernandez et al.




(2017), in a study carried out in Tamaulipas, identified that
the most intense food competition between white-tailed
deer and exotic species occurred in spring. During this
season, a high similarity was observed between the diet of
white-tailed deer and sika deer (Cervus nippon, 49 %), red
deer (Cervus elaphus, 54 %), and eland antelope (Taurotragus
oryx, 47 %). However, no studies have been carried out in
Mexico on the competition between bighorn sheep and
Barbary sheep. The cluster analysis (Figure 4) suggests that
competition for forage use might be more likely among
bighorn sheep, Barbary sheep, and white-tailed deer.
Likewise, the consumption of herbs and grasses was more
common in the diet of bovids, while shrubs and succulents
were consumed more frequently by deer.

Shrub species constitute the food base of wild herbivores
in arid ecosystems (Guerrero-Cérdenas et al. 2018; Bautista
De Luna et al. 2022). During their development, shrubs that
thrive in arid zones allocate nutrient reserves to building
new tissues, which results in a relatively high crude protein
content compared to some herbaceous and grass species
(Mazaika et al. 1992; Memmott et al. 2011). In desert
shrublands in northern Mexico, succulent plants represent
an alternative source of water for herbivores during
drought periods (Tarango et al. 2002; Gastelum-Mendoza
et al. 2020). Within this group, O. engelmannii was recorded
in high proportions in the diet of all species studied, except
for bighorn sheep, whose consumption frequency was 2 %.
This species showed a greater preference for O. microdasys
(Table 2). In this regard, Gastelum-Mendoza et al. (2020)
state that O. engelmannii is one of the dominant species in
the study area, with a mean annual IVI of 77.09 + 6.05 %.
However, O. microdasys was one of the least available
species in shrublands. Considering that bighorn sheep and
Barbary sheep require particular topographic elements
for their development and survival (Tarango et al. 2002),
competition between the two species could be intense
when they share the same habitat. In this sense, and due
to the limited information available on the simultaneous
use of the topographic space by these two species, it is not
recommended that they share the same management area.

Studies on the diet of mule deer in northern Mexico
and the southern U.S. have reported that it adapts to the
consumption of a wide variety of plant species (Olivas-
Sénchez et al. 2018b). In the Chihuahuan Desert, its diet
mainly consists of browsing leaves, the regrowth of shrubs
andsucculents,and herbs as akey emerging resource during
the period after rain. In the Mapimi Biosphere Reserve (state
of Durango), ocotillo (Fouquieria splendens) inflorescences,
which emerge in March, are an important nutritional
contribution during the dry season. These resources, which
are highly digestible (= 85 %), are consumed intensively
during critical periods (Gallina et al. 2017). Likewise,
studies carried out in Texas (Trans-Pecos and Panhandle)
reveal that the annual diet of mule deer is composed on
average of 70 % of shrub browsing, 25 % of grasses, and
5 % of grasses (Anderson 1949). The consumption of herbs

Lozano-Cavazos et al.

increases markedly after summer rains, while it may include
wheat and other crops growing in agricultural landscapes
in winter (Short 1977). In general, mule deer require diverse
shrubs and patches of herbaceous plants to maintain their
body condition and promote reproduction.

The results of this study are consistent with Olivas-
Sénchez et al. (2018a), who found that mule deer consume
mainly shrubs and succulents throughout the year, with
herb and grass consumption being less frequent (Figure 2).
Unlike the white-tailed deer, which is a selective browser
(Ramirez-Lozano 2004), the mule deer is considered an
opportunistic forager, meaning its diet depends on the local
availability of resources (Hanley 1997). This explains why A.
lechuguilla was found in high percentages only in the mule
deer diet (Table 2). Similarly, Geist (1981) points out that
this species changes its diet from one based on herbs and
grasses to one dominated by shrubs in response to extrinsic
factors. The results of the present study suggest that the
low availability and nutritional quality of herbaceous plants
in the region are insufficient to meet the requirements of
mule deer adequately. To better understand the trophic
interactions between these four herbivore species, we
recommend expanding these results with studies of
simultaneous habitat use and analyses of the nutritional
profile and availability of the main plant species consumed.

Conclusions

Barbary sheep showed a higher species richness in their
diet compared to the three herbivores that share the
same habitat. This high richness of species consumed by
Barbary sheep may be related to its nature as a generalist
herbivore capable of incorporating a wide variety of
plants without showing a marked preference for any of
them. In this sense, the creation of forage banks could
contribute to reducing overgrazing in desert shrubland
ecosystems. In general, shrub species formed the basis of
the diet of the four species analyzed. Herbaceous plants
were consumed in a greater proportion by sheep, while
deer preferred succulents. No differences were recorded
in the consumption of biological forms between seasons
of the year or between herbivore species.

The principal component analysis revealed that the
mule deer has the most distinct diet compared to the
other herbivores. In contrast, the evidence collected in
the present study suggests a low risk of trophic overlap
between cervid populations, which could facilitate their
management in shared areas without major adverse
implications. Finally, the most consumed species can be a
useful criterion for identifying new sites for repopulation,
by delimiting key foraging areas in the desert shrublands
of northeastern Mexico.
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The presence of the six species of felids distributed throughout Mexico has been documented in the state of Morelos. These species face
serious threats from habitat loss and fragmentation driven by human activities. Some, particularly medium-sized felines, such as margay,
jaguarundi, ocelot, and bobcat, remain poorly studied. Our objective was to identify their potential distribution areas within Morelos, assess
the impact of human activities on these areas, and evaluate the role of Protected Natural Areas (PNAs) in conserving their potential habitats.
We used the Maximum Entropy algorithm to model the ecological niches of the four species and generate potential distribution maps using
bioclimatic variables from WorldClim. We estimated the potential distribution areas for each species and identified zones suitable for the
coexistence of all four felines. These models were superimposed on digital maps of human settlements, agricultural fields, and bare soil to
quantify anthropogenic impacts and to assess the effectiveness of PNAs in protecting these habitats. Our results indicate that human activities
reduce the potential distribution areas of the four species by an average 42%, and only 880.56 km? (18%) of the area with primary or secondary
vegetation is protected by any PNAs. Although we identified areas with high climate suitability for these species, no research has yet confirmed
their presence. We therefore propose targeted monitoring of these areas to gather critical data that can inform conservation strategies for
medium-sized felines and their habitats in Morelos.

Keywords: Agriculture, ecological niche model, Herpailurus yagouaroundi, Leopardus pardalis, Leopardus wiedii, Lynx rufus, urbanization.

En el estado de Morelos se ha reportado la presencia de las seis especies de félidos que se distribuyen en México, estas se encuentran
gravemente amenazadas por la pérdida y fragmentacion de su habitat provocadas por las actividades humanas. Algunas de estas especies
han sido poco estudiadas, particularmente los felinos medianos (tigrillo, jaguarundi, ocelote y gato montés), por lo que nuestro objetivo fue
identificar las areas de distribucion potencial dentro de Morelos, evaluar los efectos que tienen los impactos antropogénicos sobre las areas
estimadas y analizar la importancia de las ANP estatales en la proteccién de las &reas potenciales de distribucién de estas especies. Se utilizd
el algoritmo de Maxima Entropia para modelar el nicho ecolégico de las cuatro especies y poder obtener mapas de distribucién potencial
considerando las variables bioclimaticas disponibles en WorldClim. Se estimaron las areas de distribucién potencial para cada especie y se
identificaron areas idoneas para la coexistencia de los cuatro felinos. Los modelos fueron superpuestos sobre mapas digitales de asentamientos
humanos, dreas agricolas, suelo desnudo, para cuantificar los efectos que tienen estas actividades sobre las areas de distribucidn estimadas y
analizar la importancia que tienen las ANP en la proteccion de estos felinos. Nuestros resultados indican que las actividades humanas reducen
en promedio un 42% las éreas de distribucion potencial de las cuatro especies y solo 880.56 km? (18%) del 4rea con vegetacion primaria o
secundaria estd protegida por alguin ANP. Identificamos areas de alta idoneidad climatica para estas especies, sin embargo, no existen trabajos
que comprueben su presencia, por lo que proponemos el monitoreo en las zonas con el fin de obtener informacién relevante que nos pueda
ayudar a desarrollar estrategias de conservacién para los felinos medianos y su habitat en Morelos.

Palabras clave: Agricultura, Herpailurus yagouaroundi, Leopardus pardalis, Leopardus wiedii, Lynx rufus, modelado de nicho ecoldgico,
urbanizacion.
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Habitat loss and fragmentation are among the main factors
threatening biodiversity (Crooks and Sanjayan 2006; Ryser
et al. 2019). The first reduces the habitat area, potentially
affecting species richness (Fahrig 2003; Galdn-Acedo et al.
2023), while the second divides the habitat into increasingly
smaller patches, exposing species to external threats.
Additionally, the distance between patches complicates
the displacement of individuals, influencing gene flow
between populations (Fahrig 2003; Holderegger and Di

effects of habitat fragmentation are still evident within
the PNAs. On the other hand, the distance between PNAs
contributes to the isolation of animal populations, mainly
due to habitat transformation outside them (Santiago-
Ramos and Feria-Toribio 2021; Yuan et al. 2024).

Felids are particularly vulnerable to habitat loss and
fragmentation (Crooks et al. 2011; Zanin et al. 2015; Butti
et al. 2022). Six felids are distributed in Mexico (Ceballos
and Oliva 2005): Leopardus wiedii (margay), Herpailurus

Giulio 2010). The creation of Natural Protected Areas (PNAs)
is an essential strategy to counteract the effects of habitat
loss and fragmentation and preserve biodiversity (Gray et al.
2016). However, this strategy has been insufficient, as the

yagouaroundi (jaguarundi), Leopardus pardalis (ocelot),
Lynx rufus (bobcat or red lynx), Puma concolor (puma), and
Panthera onca (jaguar). There has been a considerable
reduction in the distribution areas of these felids in
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recent years, mainly due to the loss and fragmentation
of their habitat as a result of anthropogenic activities
such as the expansion of crop fields and urban areas,
which compromises survival and puts felid populations
at risk (Carrillo-Reyes and Rioja- Paradela 2014; Dirzo et
al. 2014; SEMARNAT 2018; Solari et al. 2018). Furthermore,
these species are hunted or captured for trade or due to
the growing conflicts between wildlife and humans, as
wild felids are considered a threat to domestic animals or
humans (Inskip and Zimmermann 2009; CITES 2010; Solari
et al. 2018). Therefore, at the national and international
levels, wild felids have been listed in some risk category —
Endangered, Threatened, or Near Threatened — although
some species, such as the bobcat and the puma, are not yet
listed in a risk category (IUCN 2010; SEMARNAT 2010).

Felid conservation is essential for the integrity of
ecosystems, as they regulate the population sizes of other
species, influencing the dynamics and structure of natural
communities, which is why they are considered indicators
of habitat quality (Miller et al. 2001; Nagy-Reis et al. 2017;
Tossens et al. 2024). In addition, these mammals require
extensive areas with little human intervention for their
survival, so the area allocated for felid conservation can
potentially serve for the protection of other species
and in territorial planning through the establishment
of protected areas and to support conservation-related
decision-making (Ceballos et al. 2002; Nuiez et al. 2002;
Carrillo-Reyes and Rioja- Paradela 2014; Ashrafzadeh et al.
2020; Vega and Farias 2021)

The state of Morelos is home to the six felid species
present in Mexico (Guerrero et al. 2020; Valenzuela et al.

Materials and methods
Study area. The state of Morelos is located in central Mexico,
between coordinates 18°20; 19°07’'N and 98°37;, 99°30'W. It
covers an area of 4893 km?, representing 0.25% of Mexico's
territory (INEGI 2021a). Morelos includes five types of
climates, ranging from cold subhumid to warm subhumid.
The mean annual temperature is 21.5 °C and the mean
annual precipitation is 900 mm, with summer rainfall (INEGI
2021a). The state is divided into three ecological regions: a)
the northern mountainous region, represented by primary
temperate forests, b) the intermontane valley dominated by
crops and some disturbed patches of low deciduous forest,
and c) the southern mountainous region, characterized by
the largest extension of low deciduous forest in the state
(Monroy and Colin 1991).

Fourteen PNAs have been established in Morelos (Figure
1) — five federal, seven state, and two municipal — which
together comprise an area of 1196.9 km? (Table 1). These
PNAs seek to protect and conserve biological diversity and
natural resources in the state. Some have patches of habitat
for different mammals, while others are corridors that
maintain structural connectivity for populations of several
species (Gonzalez-Flores and Contreras-MacBeath 2020).

Ecological niche model. Ecological niche models (ENM)
were used to identify potential distribution areas of the
four medium-sized felines in Morelos. These models are
tools for exploring the relationship between presence
records and the associated environmental variables to
construct potential or actual species distribution models
(SDMs) (Guisan and Zimmermann 2000; Phillips et al. 2006;
Peterson and Soberén 2012). The ENMs and SDMs for

2020). Four of these species are medium-sized felines
that weigh between 101 g and 10 kg (Ceballos and Oliva
2005; Cervantes and Riveros Lara 2012). Information on the
distribution of medium-sized felines in Morelos is limited
to presence records in some localities and PNAs (Vargas et
al. 1992; Valenzuela et al. 2013; Aranda et al. 2014; Aranda
and Valenzuela 2015; Valenzuela et al. 2015; Vera-Garcia
et al. 2023). Although the potential distribution of these
felines in Mexico has been modeled (Monroy-Vilchis et al.
2019), the models were developed at the biogeographic
province level. This implies that areas with a suitable
climate in Morelos have not been specifically identified,
which is crucial for the conservation of these felines in the
state. Therefore, it is necessary to identify potential areas
where medium-sized felines can live in the state of Morelos,
to support the development of conservation strategies
that help prevent and mitigate the risks threatening their
populations and habitats.

Our objectives were the following: a) identify the
potential distribution areas for medium-sized felines in the
state of Morelos using ecological niche models; b) analyze
the extent to which the Natural Protected Areas in Morelos
protect the potential distribution areas; and ¢) identify
unprotected areas that could facilitate the connectivity of
the populations of these species.
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each species were generated using the MaxEnt algorithm
version 3.4.4 (Philips et al. 2006). This is one of the most
widely used algorithms for modelling ecological niches
due to its high predictive power. In addition, the results
allow predicting the availability of suitable areas for each
species, generating a geographical representation of this
information (Elith et al. 2006; Phillips et al. 2006; Kumar and
Stohlgren 2009; Merow et al. 2013).

Species records were obtained from the scientific
literature published between 2005 and 2020. A database
was constructed from the geographic coordinates of
occurrence records of the four medium-sized felines at the
national and state levels, supplemented with records from
the online database of the Global Biodiversity Information
Facility (GBIF). Records of subspecies distributed in Mexico
that could be present in Morelos were downloaded.
Duplicate records, those without geographic coordinates,
and those outside of Mexico were excluded. In total, 568
records of margay, 252 of jaguarundi, 1029 of ocelot, and
1819 of bobcat were obtained countrywide.

An ENM was generated for each feline species using its
presence records in Mexico and coverage information on 19
climatic variables obtained from WorldClim that have been
previously used for feline ENMs (Martinez-Calderas et al.
2015, 2016; Pérez-Irineo et al. 2019; Morales-Delgado et al.
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Figure 1. Map of the state of Morelos and its PNAs (acronyms after the name in Spanish). 1. Lagunas de Zempoala National Park (PNLZ), 2. Chichinautzin Biological Corridor Flora and
Fauna Protection Area (APFFCBC), 3. El Tepozteco National Park (PNET), 4. Iztaccihuatl-Popocatepetl National Park (PNIP), 5. Sierra de Huautla Biosphere Reserve (REBIOSH), 6. Sierra de
Monte Negro State Reserve (RESMN), 7. Las Estacas State Reserve (RELE), 8. Cerro de la Tortuga State Park (PECT), 9. El Texcal State Park (PEET), 10. Los Sabinos, Santa Rosa, San Cristébal
Ecological Conservation Zone (ZSCESSS), 11. Barranca de Chapultepec Urban State Park (PEUBC), 12. Cueva El Salitre Wildlife Refuge (RVSCS), 13. Barrancas Urbanas de Cuernavaca

Protected Natural Zone (ZNPBUC), 14. Bosque Mirador Protected Natural Area (ANPBM).

2021). Climate data were limited to the period 1970-2000
and had a spatial resolution of 1 km. The accessible area
(M-area) was delimited (Soberén et al. 2017) by selecting
the global terrestrial ecoregions reported by Olson et al.

information (Zurell et al. 2020; Passos et al. 2024). Layers
with a Pearson correlation coefficient greater than 85%
were considered correlated variables (Dorman et al. 2013;
Passos et al. 2024). Based on these results, we selected the

(2001) that coincided with the location of records for each
species and with the country area. The resulting areas were
used to delimit the set of bioclimatic layers for each species.

Based on records obtained via spatial filtering, the values
of the 19 bioclimatic layers were extracted for each species,
and a correlation test was performed to remove redundant

layers with simpler interpretations and a direct effect on
the biology of the four species.

Initially, all records for each species were included in the
niche models, with the climate variables selected after the
correlation analysis. To avoid overrepresentation of records
without affecting model fitness, spatial filtering was
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Figure 2. Maps of calibration areas and records of each medium-sized feline species in Mexico.

performed at different distances from presence records.
The 1 km distance produced the best response. The Tkm
spatial filtering produced 302 records for margay, 240 for
jaguarundi, 643 for ocelot, and 804 for the bobcat (Figure 2).
Of the total records obtained, 70% were randomly selected
to calibrate the ENM and 30% to validate the SDM using
the partial ROC method available in the ntbox package in R
(Osorio-Olvera et al. 2020).

Since using a large number of bioclimatic layers in models
can lead to prediction errors (Peterson and Nakazawa 2008),
these were reduced based on three reliable criteria in the
MaxEnt output: 1) Jackknife plots, which evaluate the relative
importance of environmental variables. For all species, the
variables maintained in the models were those with the
highest contribution and those that most affected the model
(Phillips 2010; Merrow et al. 2013; Golden et al. 2022). 2) The
table of the percentage contribution and importance of the
permutation of the variables to each model (Phillips 2010).
3) The final model was the one with the lowest number of
climatic variables with an AUC value greater than 0.70.

Species distribution model. The SDM models were created
from ENMs and validated with the partial ROC method
available in the ntbox package in R (Osorio-Olvera et al. 2020).
The bootstrap technique was used, selecting 50% of the
validation records for each of the 500 iterations performed.

The potential distribution of the four felines in the state
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of Morelos was spatially represented using binary models.
The presence-absence cut-off threshold was set at the
10th percentile of the training presence method because
there were no data on actual absence (Brito et al. 2009)
and because it is a good threshold that accurately recovers
the distribution of mammals (Escalante et al. 2013). This
threshold was also selected based on the model with the
smallest predicted area, with the lowest omission and
commission rates.

Considering that 11 records were obtained for margay,
4 for jaguarundi, 2 for ocelot, and 27 for bobcat in Morelos,
the cut-off threshold by species was set to include most of
these records; only one record for ocelot was not predicted.
After defining the cut-off threshold, binary climate
suitability (CS) maps were generated in the calibration area.
Subsequently, the CS areas for each species in Morelos were
delimited, and a consensus was derived by superimposing
these areas to identify the potential distribution range of
the four species in the state of Morelos.

Contrast with human activities and Natural Protected
Areas. Exclusion zones for the distribution of the four
felines were delimited on the generated binary DMs,
assigning a suitability value of 0 (zero) to areas that do
not correspond to primary vegetation, secondary tree
vegetation, and secondary shrub vegetation. According to
the land use and vegetation layer series VIl (INEGI 2021b),
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Table 1. Protected Natural Areas in the state of Morelos. The names of the PNAs are presented along with their category. The numbering corresponds to that in Figure 1. The acronyms
used in the text are indicated in parentheses.

Areain Primary Sec;::ary Se:::::l: v Medium-sized
Protected Natural Area Jurisdiction® Morelos Vegetation types” vegetation . . felines reported in
(km?)* (km?) ™ vegetation vegetation Morelos ™
(km?) ™ (km?) ™
1. Lagunas de Zempoala National Federal 30.04 Aquatic, pine-fir forest, alpine 28.67 0 0 Bobcat and ocelot
Park (PNLZ) grassland
2. Chichinautzin Biological Federal 369.87 Pine, pine-oak, fir, and mountain 160.92 3243 45.71 Bobcat and margay
Corridor Flora and Fauna cloud forest, oak forest, low
Protection Area (APFFCBC) deciduous forest, and crasicaule
shrub
3. El Tepozteco National Park Federal 209.54 Pine, pine-oak, fir, mountain cloud 40.61 52.42 51.26 Bobcat
(PNET) forest, and low deciduous forest
4. |1ztaccihuatl-Popocatépet! Federal 4.44 Pine-fir forest, alpine moorland 3.89 0 0 No report
National Park (PNIP) and grasslands
5. Sierra de Huautla Biosphere Federal 488 Low deciduous forest 40.97 41.17 298.98 Bobcat and margay
Reserve (RBSH)
6. Sierra de Monte Negro State Estatal 77.25 Low deciduous forest 0 41.68 30.46 Margay
Reserve (RESM)
7. Las Estacas State Reserve State 6.52 Low deciduous forest, riparian 0 0 5.52 No report
(RELE) forest, and aquatic and
underwater vegetation
8. Cerro de la Tortuga State Park State 3.10 Low deciduous forest 0 0 2.93 No report
(PECT)
9. El Texcal State Park (PEET) State 2.6 Low deciduous forest 0 242 0 No report
10. Los Sabinos Santa Rosa State 1.52 Aquatic and riparian forest 0 0 0 No report
San Cristébal Zone Subjected
to Ecological Conservation
(ZSCESSS)
11. Barranca de Chapultepec State 0.13 Aquatic and riparian forest 0 0 0 No report
Urban State Park (PEUBC)
12. Cueva El Salitre Wildlife State 0.0003 Low deciduous forest 0 0 0 No report
Refuge (RVSCS)
13. Barrancas Urbanas de Municipal 37 Aquatic and riparian forest 0.84 0 0 No report
Cuernavaca Protected Natural
Zone (ZNPBUC)
14. Bosque Mirador Protected Municipal 0.22 Pine-oak forest 0 0 0.16 No report
Natural Area (ANPBM)
Total surface area 1196.93 275.90 170.12 435.03

*Data from Gonzalez-Flores and Contreras-MacBeath 2020.
**Cover according to the land use and vegetation layer, series VIl of INEGI (2021b).
***Records obtained from GBIF, Valenzuela et al. (2013), Aranda and Valenzuela (2015), and Vera-Garcia et al. (2023).

Results
The final ENMs were calibrated with 212 records for margay,

the primary vegetation covers an area of 332.48 km? the
secondary tree vegetation, 318.12 km? and the secondary

shrub vegetation, 1184.62 km?. In the resulting SDMs, we
quantified the potential distribution areas for each species.
The SDMs of each species were superimposed to estimate
the areas of medium-sized feline richness in Morelos. Finally,
the federal, state, and municipal PNAs were superimposed,
and, according to the CS, the number of medium-sized
feline species that each PNA could potentially host and the
potential distribution area of each species protected by the
PNAs were counted.

168 for jaguarundi, 403 for ocelot, and 563 for bobcat,
using a combination of variables associated with the
presence records for each species (Table 2). According to
the contribution and permutation values and the Jackknife
method, the minimum temperature of the coldest month
is the most important variable for margay, jaguarundi, and
ocelot, while the seasonality of precipitation is the key
variable for bobcat. The second most important variable
differed among species: annual temperature range for
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Table 2. Importance of climatic variables and evaluation of models with the partial ROC method, according to the Jackknife output. An asterisk indicates that the variable produces a
better model fit; two asterisks indicate that the absence of the variable reduces the model fit.

Species Climatic variable Percentage Percentage Mean AUC ratios p-value for the
contribution permutation (partial ROC) partial ROC analysis
Margay Bio6 (minimum temperature of the coldest month) ** 53.8 53.6 1.36 <0.00001
Bio7 (annual temperature range) * 36.4 343
Bio15 (precipitation seasonality) 6.4 7.3
Bio10 (mean temperature of the warmest quarter) 34 4.7
Jaguarundi Bio6 (minimum temperature of the coldest month) */** 77.9 13.1 1.28 <0.00001
Bio4 (temperature seasonality) 133 23.1
Bio10 (mean temperature of the warmest quarter) 55 334
Bio7 (annual temperature range) 33 304
Ocelot Bio6 (minimum temperature of the coldest month) * 74.2 20.2 1.25 <0.00001
Bio1 (mean annual temperature) ** 16.1 47.2
Bio7 (annual temperature range) 9.8 326
Bobcat Bio15 (precipitation seasonality) */** 36.8 25.8 1.12 <0.00001
Bio10 (mean temperature of the warmest quarter) 26.8 338
Bio6 (minimum temperature of the coldest month) 14 6
Bio19 (precipitation of the coldest quarter) 123 14.5
Bio3 (isothermality) 10.1 20

margay, temperature seasonality for jaguarundi, mean
annual temperature for ocelot, and mean temperature of
the warmest quarter for bobcat (Table 2).

Based on the MaxEnt response curves (Philips et al. 2006)
and information on environmental variables associated
with the records, we described the relationships between
the climatic variables and the records of the four species.
The minimum temperature of the coldest month was used
for all four species, which showed a positive relationship
between 0 °C and 22 °C for margay, jaguarundi, and
ocelot, but a negative relationship between -6 °C and 20
°C for bobcat. The temperature of the warmest quarter was
used in three species, revealing a positive relationship for
jaguarundi (between 14 °C and 30 °C) and ocelot (between
12 °C and 30 °C), and a negative relationship for bobcat
(between 8 °C and 33 °C). The annual temperature range
was relevant for margay, jaguarundi, and ocelot, with a
negative relationship between 10 °Cand 34 °C. Precipitation
seasonality was considered for the bobcat only, with a
negative relationship and coefficients of variation ranging
from 47 to 140.

The partial ROC evaluation of the SDMs indicates that
the predicted potential distribution of the species is greater
than expected by chance, with average values of AUC ratios

of 1.36 (p < 0.0001) for the margay, 1.28 (p < 0.0001) for
the jaguarundi, 1.25 (p < 0.0001) for the ocelot, and 1.22
(p < 0.0001) for the bobcat (Table 2). Binary SDMs predict
an area with CS of 4327.28 km? for margay, 3564.6 km?
for jaguarundi, 3280.2 km? for ocelot, and 2926 km? for
bobcat. Of these areas, 20% correspond to water bodies,
induced grasslands, induced palm forest, bare soil, and
devoid of vegetation; 9%, to human settlements; and 33%,
to agricultural areas. By reducing these binary model areas,
the area with CS decreases to 38% (+ 0.74) for each species
(Table 3, Figure 3).

Of the total area considered potentially viable, 7%
corresponds to primary vegetation, an additional 7% to
secondary tree vegetation, and 24% to secondary shrub
vegetation. In terms of extension, most of the potential
distribution of neotropical felines (ocelot, jaguarundi,
and ocelot) is concentrated in the central and southern
regions of the state, although the models also consider
regions to the north for the ocelot. For bobcat, a large part
of its potential distribution is concentrated in the north
and center of the state, largely coinciding with that of
margay (Figure 3).

Considering the reduction of SDMs associated with the
absence of primary or secondary vegetation, the area that

Table 3. Potential distribution area for the four medium-sized felines present in the State of Morelos. Estimates of the area with climate suitability (CS) that coincides with primary and
secondary vegetation (tree and shrub) are shown, as well as the area within and outside protected natural areas.

CS area with vegetation cover within CS area with vegetation cover outside

Species CS area (km?) CS area with vegetation cover (km?) PNAs (km?) PNAs (km?)
Margay 4327.28 1646.21 726.36 919.85
Jaguarundi 3564.56 1352.99 487.07 865.92
Ocelot 3280.16 1298.02 490.78 807.24
Bobcat 2926.04 1125.85 514.50 61135
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Figure 3. Potential distribution of the four medium-sized felines in the state of Morelos. Sections A, C, E, and G depict the models obtained from MaxEnt. Subparagraphs B, D, F, and
H correspond to areas with climate suitability that coincide with primary vegetation, secondary tree vegetation, and secondary shrub vegetation (INEGI 2021b).
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Figure 4. Richness model of the potential distribution of the four feline species in the state of Morelos. Blue shades indicate areas where the four species of medium-sized felines are
potentially distributed. A) Region with a continuous area with climate suitability for four species in the west of the state; B) region with a continuous area with climate suitability for four

species between RELE and RBSH.

can potentially host one feline species is 189.70 km? two
species, 360.43 km? three species, 625.92 km? and the area
with CS and vegetation cover in which the four species could
potentially be present is 658.69 km?, with region A (208 km?)
and region B (404 km?) in Figure 4 being the largest.

By superimposing the PNAs on the richness areas model,
the PNAs showing CS and vegetation cover for four species
are APFFCBC FllI, PNET, RBSH, RESMN, RELE, PEET, PECT,
and ZPNBUG; it is worth mentioning that the last four have
an area of less than 7 km? (Figure 4). The PNAs that show
CS and vegetation cover for three species are APFFCBC FI
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and ANPBM, the latter with an area of only 0.22 km? but
contiguous to APFFCBC FI (Figure 4). Finally, the PNAs with
CS and vegetation cover for two species are PNIP and PNLZ,
in which the potential distributions of margay and bobcat
overlap (Figure 4).

Discussion

ENMs show climatic segregation, consistent with the Neo-
tropical and Nearctic affinities reported for these felines
(Sunquist and Sunquist 2002; Solari et al. 2018). The presence
records of margay, jaguarundi, and ocelot are associated with




warm and temperate climates, which prevail in the study
area and favor a large CS area in Morelos for these species.
On the other hand, bobcat presence records are associated
with low temperatures, which explains the availability of CS
areas in the north of the state.

The SDMs show that, despite differences in the
importance of climate variables, their combination predicts
potential overlapping distribution ranges for the four
species. However, it is worth noting that only 38% of the CS
area has native vegetation cover, with 24% being secondary
shrub vegetation. Therefore, factors such as habitat patch
size and conservation status could limit the use of CS areas,
as they are not sufficiently large and conserved to support
populations of the four felines (Fahrig 2003; Lawrence et al.
2018; Cudney-Valenzuela et al. 2021).

When SDMs were superposed, two CS areas for the
potential distribution of a single species were predicted,
covering 3.9% of the area of Morelos. The first is located
in the northern part of the state, corresponding to a large
part of the potential distribution of the bobcat; the second
corresponds to part of the potential distribution of the
margay and is located in the southeast and northeast of the
state (Figure 4).

The area where the potential distribution ranges of
two feline species overlap is equivalent to 7.4% of the
state (Figure 4). The combinations predicted are as follows:
bobcat and margay in the north of the state, margay and
jaguarundi in the center, and ocelot and jaguarundi in the
south of the state. The area potentially inhabited by three
feline species covers 12.8% of the state, resulting from
the intersection of the CS areas of margay, ocelot, and
jaguarundi, mainly in the central and southern regions
of the state. Intersections of potential ranges of bobcat
with margay and ocelot, and with jaguarundi and ocelot,
and with jaguarundi and margay were also found, but in
a smaller proportion. Finally, the results showed that the
potential area where the four species could be found is
equivalent to 13.5% of the state area, mainly in the west
(region A, Figure 4) and the center-south of the state (region
B, Figure 4).

Although our results show areas in Morelos where all
four species could be found, interactions between these
felines should also be considered, as these may also limit
the presence of a given species. Previous studies indicate
that the medium-sized felines studied could compete for
similar resources, hampering their coexistence (Hutchinson
1957; Jacksic and Marone 2007). However, they could
display spatial or temporal segregation mechanisms that
could favor sympatry (Nufiez et al. 2002; Di Bitetti et al.
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2012; Newbold et al. 2015). This effect is evident in the
42% reduction in CS areas for felines in the state. However,
it should be noted that 33% of the potential distribution
range of medium-sized felines corresponds to agricultural
areas, which are considered the productive base of the
primary sector (Monroy and Colin 1991; Escandon et
al. 2018). Therefore, habitat conservation strategies for
medium-sized felines should be designed considering
these activities.

Our findings show that the PNA complex in the north
of the state (PNLZ, APFFCBC, PNET, and PEET) mainly
protects CS areas for bobcat and margay and, to a lesser
extent, for ocelot and jaguarundi. RESMN and REBIOSH,
located in the center and south of the state, respectively,
have climatic conditions and primary, secondary tree, and
secondary shrub vegetation that are ideal for the potential
distribution of the four species. According to previous
reports, APFFCBC, PNET, and REBIOSH have high CS for the
distribution of margay (Morales-Delgado et al. 2021), which
is consistent with our results.

The protected areas are supplemented by smaller PNAs
that have CS for at least one species (ZNPBUC, ANPBM,
PEET, PECT, and RELE). However, due to their extension, they
cannot house or conserve a population of felines, as their
area is smaller than the home ranges reported in Mexico
for bobcat, ocelot, and jaguarundi (Elizalde-Arellano et
al. 2012; Caso 2013; Giordano 2016). Nonetheless, some
small PNAs are located adjacent to larger PNAs, and others,
such as RELE, are part of large areas outside PNAs that are
covered by vegetation and have ideal climatic conditions
for the establishment of feline populations (region B in
Figure 4). In addition, small PNAs could serve as stepping
stones to facilitate the movement of individuals between
PNAs (Duenas-Lopez et al. 2015; Herrera et al. 2017; Luja
et al. 2017). However, to favor the role of these small PNAs
as stepping stones, the design of structural corridors
connecting them to larger PNAs or to regions A and B is
required (Figure 4).

Although our results suggest that at least 11 of the 14
PNAs in Morelos have a high CS for the four medium-sized
felines, records of these species in PNAs are scarce, and
their presence has only been reported in five of them. The
first record of the ocelot was reported in PNLZ in 2014. The
presence of ocelot has also been confirmed in APFFCBC,
REBIOSH (Valenzuela et al. 2013; Aranda Valenzuela 2015),
and recently in RESMN (Vera-Garcia et al. 2023). There
are several records of bobcat in PNLZ, APFFCBC, and
PNET (Monroy and Veldzquez 2002; Uriostequi-Velarde
et al. 2015), and, to a lesser extent, in RBSH (Valenzuela

2010; Bianchi et al. 2014; Carrera et al. 2018).

The constant spatial and demographic growth of urban
areas or the expansion of the agricultural frontier have
contributed to the transformation and degradation of
natural systems, with a negative impact on biodiversity,
limiting resources, and the ability to establish populations
for some species (Monroy and Veldzquez 2002; Sierra

et al. 2013). There are no published records of jaguarundi
confirming its presence in PNAs of Morelos, although there
are anecdotal records that await confirmation.

This work also identified areas outside of the PNAs with
primary, secondary tree, and secondary shrub vegetation
that have CS for the potential distribution of the four
medium-sized felines. One such area is region A (Figure
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4), which, according to the richness model, covers 208.01
km? and is mainly composed of low deciduous forest (INEGI
2010a; Miranda-Gonzalez et al. 2011). In this region, Alvarez
et al. (2009) reported the presence of jaguarundi, ocelot,
and bobcat in the community of Paredén, municipality
of Miacatlan. Another important area is region B (Figure
4), located between RESMN-RELE and REBIOSH, covering
404.25 km? of low deciduous forest (INEGI 2010b; INEGI
2010¢) with CS for the four felines.

Studies in regions A and B addressing the local fauna
are scarce. Therefore, it is recommended to implement
systematic monitoring to evaluate the conservation status,
potential threats, and the presence of key or indicator
species, such as felines. On the other hand, although
there are remnants of relatively conserved vegetation, no
measures have been put in place to protect and conserve
them in these regions. Consequently, evaluations should
be conducted to incorporate these areas into the Morelos
protected natural areas system.

The results of the present study highlight the
importance of designing monitoring programs to confirm
the presence of the studied feline species in the different
Morelos localities where their presence has not yet been
substantiated. In addition, we suggest supplementing the
programs with restoration actions, as between 40% and
58% of the final areas predicted by the models correspond
to secondary shrub vegetation, which would restrict their
viability. On the other hand, the potential distribution
of these four felines should be considered in the State
Urban Development Program and the Ecological Land-Use
Planning Program to prevent further degradation of their
habitat. It is therefore necessary to conserve and protect
the areas that contribute to the structural connectivity
between the PNAs. With this information and with the
participation of different sectors of society, comprehensive
conservation strategies can be established that guarantee
the protection and restoration of the areas potentially
inhabited by medium-sized felines in the state of Morelos.
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This study analyzed the diet, trophic niche overlap, and resource selection of two sympatric foxes, Cerdocyon thous and Lycalopex
gymnocercus, in Mburucuya National Park, a protected area within the Ibera Ecoregion, Argentina. Between December 2014 and November
2015, a total of 293 scat samples were analyzed, with 44% identified as C. thous and 56% as L. gymnocercus. The analysis revealed 11 plant
species and 27 animal taxa that were consumed by both foxes. The results suggest that both species are hypocarnivorous and have overlapping
trophic niches throughout the year, although they exhibit seasonal variations in their trophic amplitudes. During the winter months, when fruit
availability was low, both species displayed more active foraging behavior. This selective foraging was evidenced by their consumption of
specific palm species, which likely represent a critical nutritional source. Although insects and arachnids (weighing between 0.1 and 10 grams)
were their most common prey, meso and small mammals constituted approximately 90% of the consumed biomass due to their larger size.
Further research should focus on the trophic plasticity of these foxes in other environments and on quantifying the nutritional contributions of
different food sources. Comparing these findings from a protected area to those from anthropogenically disturbed environments will be crucial
for understanding the species’ conservation needs.

Keywords: Canids, coexistence, food availability, Mburucuya National Park, resource partitioning, trophic overlap.

Este estudio analizé la dieta, la superposicion de nichos tréficos y la seleccion de recursos de dos zorros simpatricos, Cerdocyon thous y
Lycalopex gymnocercus, en el Parque Nacional Mburucuyd, un drea protegida dentro de la Ecorregion Iberd, Argentina. Entre diciembre de 2014
y noviembre de 2015, se analizaron un total de 293 muestras de heces, de las cuales el 44% se identificaron como de C. thous y el 56% como
de L. gymnocercus. El andlisis reveld 11 especies de plantas y 27 taxones de animales que fueron consumidos por ambos zorros. Los resultados
sugieren que ambas especies son hipocarnivoras y presentan superposicién de nichos tréficos a lo largo del aflo, aunque muestran variaciones
estacionales en sus amplitudes tréficas. Durante los meses de invierno, cuando la disponibilidad de fruta era baja, ambas especies mostraron un
comportamiento de busqueda de alimento (forrajeo) mas activo. Este forrajeo selectivo se evidencié por su consumo de especies de palmeras
especificas, lo que probablemente representa una fuente nutricional critica. Aunque los insectos y aracnidos (con un peso entre 0,1y 10
gramos) fueron sus presas mas comunes, los meso y pequefios mamiferos constituyeron aproximadamente el 90% de la biomasa consumida
debido a su mayor tamano. Es necesario que la investigacion futura se centre en la plasticidad tréfica de estos zorros en otros entornos y en
cuantificar las contribuciones nutricionales de las diferentes fuentes de alimento. La comparacion de estos hallazgos de un area protegida con
aquellos de ambientes sujetos a perturbacién antropogénica serd crucial para comprender las necesidades de conservacion de las especies.

Palabras clave: Canidos, coexistencia, disponibilidad de alimento, Parque Nacional Mburucuyd, particién de recursos, superposicion trofica.
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The competitive exclusion principle, states that competitors
using identical resources cannot coexist (Hardin 1960).
Competitive exclusion can manifest either as exploitative
competition, where species vie directly for limited resources,
or as apparent competition, which is mediated by shared
natural enemies (Johnson and Bronstein 2019). To avoid it,
sympatric species often differentiate their use of available
resources, a phenomenon known as niche differentiation
(Kooyers et al. 2017). Niche partitioning fundamentally
explains how different species within a community divide
and use space and resources to reduce interspecific
competition, thus allowing for their coexistence (Pianka
1986; Petalas et al. 2021; Riha et al. 2025). To study these
dynamics, ecologists measure niche overlap, which assesses

the degree of shared resource use between species,
facilitating the analysis of potential competition (Colwell
and Futuyma 1971; Hurlbert 1978). From an ecological

perspective, coexistence depends on morphological,
physiological and/or behavioral divergences. These
differences can lead to differential resource utilization or
spatial or temporal variation in the use of similar resource
(Schoener 1974). Furthermore, at finer spatial scales,
variations in resource use by a species have been directly
linked to greater niche overlap or partitioning (Anderson et
al. 2011; Avila-Najera et al. 2020).

Given their phylogenetic proximity and morphological
similarities (Xiaoming et al. 2004), canids (Carnivora,
Canidae) are an ideal subject for this analysis. In
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TROPHIC ECOLOGY OF TWO SYMPATRIC FOXES IN IBERA, ARGENTINA

Figure 1. Study Area. Geographical location of Mburucuya National Park (Corrientes, Argentina).

northeastern Argentina, two sympatric species with similar
characteristics coexist: the crab-eating fox Cerdocyon thous
(Linnaeus, 1766) and the pampas fox Lycalopex gymnocercus
(G. Fischer, 1814). Both foxes are medium-sized, with C.
thous weighing 4.5-8.5 kg (head-body length 54-77.5 cm)
and L. gymnocercus weighing 3-8.2 kg (head-body length
44-72 cm) (Castelld6 2018). As opportunistic omnivorous,
their diets include a wide range of food items, including
fruit, carrion, and prey ranging from such as ungulates,
armadillos, capybaras, small mammals, birds, reptiles,
amphibians, crustaceans, and insects (Sillero-Zubiri et al.
2004; Luengos Vidal et al. 2019).

The geographical ranges of these foxes overlap
considerably (Sillero-Zubiri et al. 2004; Di Bitteti et al
2009). The distribution of C. thous extends from northern
Colombia and Venezuela to a substantial portion of Brazil,
eastern Bolivia, Paraguay, Uruguay, and on to northern
Argentina.ltis highlyresilient, able to utilize awide variety of
environments, including savannas, swamps, mesophileous
forests, lowlands within the Amazon rainforest zone, and
anthropogenic areas such as plantations, agricultural
fields, and/or regenerating developments (Eisenberg and
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Redford 1999; Courtenay and Maffei 2004). However, its
presence in anthropogenic areas, such as plantations and
agricultural fields, highlights its tolerance for disturbed
habitats, though this resilience often comes at the cost of
increased exposure to zoonotic diseases, such as severe
scabies (Oliveira et al. 2025). In turn, the distribution of L.
gymnocercus ranges from southern Bolivia and Brazil to
Chile, Paraguay, Uruguay, and Argentina, reaching as far
south as Tierra del Fuego (Luengos Vidal et al. 2019). Due to
the potential for competition in their overlapping habitats,
studying these species in sympatry offers a valuable
opportunity to investigate the mechanisms facilitating
their coexistence (Bossi et al. 2018).

Several studies have compared the ecological niche of
C. thous and L. gymnocercus in both Brazil and Argentina
(Vieira and Port 2007; Di Bitetti et al. 2009; Faria-Corréa et
al. 2009; Bossi et al. 2018; Di Bitteti et al. 2022; Bay-Joulia
et al. 2024; Romero et al. 2025). Focusing on the niche
complementarity hypothesis which posits that some niche
dimensions are partitioned when there is high overlap in
another (Schoener 1974). Vieira and Port (2007) found a
high degree of dietary overlap, between these foxes in




Table 1: Occurrence data and percentage obtained from the diet composition
of canids, Cerdocyon thous and Lycalopex gymnocercus, in Mburucuya National Park,
Corrientes, Argentina (2014-2015). References: O, occurrence; OP, occurrence percentage.

Cerdocyon thous
(scat samples: 129)

Lycalopex gymnocercus
(scat samples: 164)

FLESHY FRUIT PLANTS Count O oP Count O oP
Syagrus romanzoffiana 108 15 7.65 36 11 5.7
Butia yatay 161 34 1735 239 44 228
Bromelia serra 15 7 3.57 14 6 3.11
Ocotea acutifolia 885 28 1429 370 16 8.29
Eugenia uniflora 38 2 1.02
Ficus luschnathiana 818 20 1020 320 9 4.66
Citrus 5 3 153 4 3 1.55
Chrysophyllum gonocarpum 22 2 1.02
Chrysophyllum marginatum 200 1 0.51 975 7 3.63
Psidium guajava 15 2 1.02 3 1 0.52
Solanaceae 35 2 1.02 80 2 1.04
ANIMAL CATEGORIES
INVERTEBRATES
Gastropoda
Pomacea canaliculata 1 3 1.55
Crustacea
Trichodactylus kensleyi 4 4 2.04 3 3 1.55
Arachnidae
Ixodidae 3 1 0.51 1 1 0.52
Scorpiones
cf. Bothriurus sp. 3 3 1.53 1 1 0.52
Araneae 1 1 0.52
Insecta
Mantidae 1 1 0.51
Acrididae 96 28 1429 63 29 15.03
Gryllidae 1 1 0.52
Tettigonidae 2 1 0.52
Lepidoptera 3 3 1.53
Formicidae 1 1 0.52
Scarabeidae 6 5 2.55 14 9 4.66
Cicindelinae 2 2 1.02
Carabidae 1 1 0.51
Unidentified beetle 3 3 1.53 1 1 0.52
Other unidentified insects 61 3 1.53 26 6 311
VERTEBRATES
Unidentified fish 1 1 0.51 1 1 0.52
Unidentified reptiles 2 2 1.02 2 2 1.04
Colubridae 1 1 0.52
Lacertilia 2 2 1.02
Eggs 1 1 0.51
Unidentified small birds 1 1 0.51 1 1 0.52
Passeriforme 8 8 4.15
Mammals
Cavia aperea 1 1 0.51 2 2 1.04
Hydrochoerus hydrochaeris 2 2 1.03 2 2 1.04
Unidentified small mammals 7 7 3.57 7 7 3.63
Unidentified medium
mammals 9 9 4.59 13 13 6.74
TOTAL 2511 196 100 2203 193 100

Romero et al.

the Aparados da Serra National Park (Southeastern Brazil,
29°10'S, 50°25'W), whilst they partitioned habitat use
over time and space: C. thous exhibited a more nocturnal
activity pattern and was observed more frequently at forest
edges, in grasslands, and on roads, whereas L. gymnocercus
was more prevalent in open areas (Vieira and Port 2007).
Likewise comparative diet analysis across three protected
areas in northeastern Argentina (Mburucuya National Park,
Portal de San Nicolas, and Rincén de Santa Maria Natural
Reserve) also evidenced high degree of niche overlap
among these species, along with considerable dietary
breadth (Bay-Joulia et al. 2024).

Morphological convergence, specifically comparable
body weights, minimizes intraguild conflict a conclusion
consistent with the Donadio and Buskirk (2006) framework,
which links similar body size ratios among carnivores to
reduced intraguild killing (Di Bitetti et al. 2022). This effect
is complemented by significant ecological partitioning,
evidenced by divergent niches and distinct habitat
preferences (Di_Bitetti et al. 2009). Further evidence
comes from Romero et al. (2025), who reported mean
densities of 0.27 individuals/km? for L. gymnocercus and
0.50 individuals/km? for C. thous in Mburucuya National
Park. Their density model revealed that greater plant cover
positively influenced C. thous but negatively affected L.
gymnocercus, confirming a differentiated habitat use that
sustains local coexistence.

In this study, we assess the diet, resource availability, and
the selection of resources by C. thous and L. gymnocercus
to understand the potential partitioning or overlap of their
trophic niches. The research was conducted on protected
populations in the Ibera Region, within Mburucuya
National Park (Corrientes, Argentina). Given the diversity of
habitats and food resources within the park, and building
upon empirical observations from previous ecological
studies, we formulated three main hypotheses: the dietary
composition of both species is similar, which will be evident
in shared food items and a high niche overlap index; the
consumption of fleshy fruits by both species will adjust to
their environmental availability, with the percentage of fruit
in their diets increasing when these items are abundant
and decreasing when availability is scarce; and finally, the
fox species inhabit environments with a greater richness
of fruit-bearing plants, indicating that the active foraging
behaviour for these resources could be happening.

Materials and methods

Study area. The study was conducted in Mburucuya
National Park (MNP), spanning 17,086 hectares in
the central-northwestern part of Corrientes province
(27°58'S and 58°08'W), northern Argentina (Figure 1).
The park’s landscape is characterized by a topography of
sandy ridges—relicts of an ancient alluvial megafan of
the Parand River—and slow-draining wetlands, locally
known as ‘esteros’ (Contreras and Contreras 2017). From
a phytogeographical perspective, the MNP is in the Ibera
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Figure 2: Food items variation (%) in canids Cerdocyon thous and Lycalopex gymnocercus 2014-2015, measured using the standardized Levins Index, in Mburucuya National Park

(Corrientes, Argentina).

Ecoregion, with a biodiversity that includes plant species
from the Eastern Humid Chaco, Paranaense, and Espinal
districts (Cabrera 1976; Arbo 2004). Its main habitats consist
of tall grasslands, mesophileous forests, and palm groves of
Butia yatay (Mart.) Becc., where wetlands, including lakes
and streams, constitute 64% of the total area, providing
crucial ecological functions.

The climate is classified as humid subtropical, with an
average annual temperature of 21°C, reaching maximum
values above 40°Cin summer, but without a defined thermal
winter (Contreras et al. 2020). Precipitation is rainfall, with
an annual average of 1,400 mm, predominantly occurring
from spring to autumn (October - May), with peak rainfall in
April and May. In contrast, precipitation during winter (June

Field work. Between December 2014 and November
2015, scat samples were collected along twelve transects
(1 to 4.5 km in length) located in three MNP habitats:
mesophileous forests, grasslands, and B. yatay palm
groves. Samples were identified in the field by their size,
shape, odour, the presence of hair or fruits, location of
deposition, and their association with fox tracks (Chame
2003; Pedé et al. 2006; Vieira and Port 2007; Varela et al.
2008). Scat that could not be attributed with certainty
to the species under investigation was discarded, and
fragments found within a 0.5 m? area were considered a
single defecation (Vieira and Port 2007). In the laboratory,
samples were assigned to species level by identifying bile
acid patterns using thin-layer chromatography (Cazén et

- September) is minimal or absent (Smichowski et al. 2022;
Smichowski and Contreras 2024).
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al. 2009; Casanave et al. 2012). Scat analysis was chosen
as a reliable, cost-effective, and non-invasive method for



Table 2: Trophic niche overlap. (Pianka Index) and diet composition of canids,
Cerdocyon thous and Lycalopex gymnocercus, in Mburucuya National Park, Corrientes,
Argentina, during winter-summer 2014-2015. References: CT, C. thous; LG, L. gymnocercus.

Winter seasonal Summer seasonal

Occurrence percentage (%)

CcT LG CcT LG
Scat samples 49 51 80 113
FLESHY FRUIT PLANTS
Syagrus romanzoffiana 14.5 19.5 4.7 2.1
Butia yatay 9.7 24 221 29.7
Bromelia serra 1.3 14.6
Ocotea acutifolia 221 1
Eugenia uniflora 1.6
Ficus luschnathiana 3.2 2.4 14.2 55
Citrus 48 7.3
Chrysophyllum gonocarpum 1.6
Chrysophyllum marginatum 0.8 4.8
Psidium guajava 1.6 0.7
Solanaceae 1.6 14
ANIMAL CATEGORIES
Invertebrates 355 12.2 213 31
Fish 1.6 0.7
Reptiles 1.6 1.6 2.1
Birds 9.8 0.8 35
Small mammals 1.3 14.6 0.8 2.1
Medium mammals 6.5 17.1 55 55
PIANKA INDEX 0.75 0.90

estimating the diet of carnivores, a technique widely used
in this type of study (Vieira and Port 2007; Marucco et al.
2008; Bay-Joulia et al. 2024)

Fleshy-fruit Availability. The phenology and abundance
of 11 species of fleshy-fruited plants—previously detected
in the diets of the two fox species under study (Bueno and
Motta-Junior 2004; De Almeida Jacomo et al. 2004; Ped6
et al. 2006; Varela et al. 2008; Vieira and Port 2007)—were
monitored monthly from January to November 2015 at
the MNP. For this purpose, 20 sampling sites (100 m x 20
m) were established, distributed equitably and strategically
across three vegetation strata: seven in mesophileous
forests, seven in grasslands, and six in palm groves,
following the methodology proposed by Ganzhorn et al.
(2011). At each site, the number of individuals per species
and their phenological data (flowering, fruit ripening, and
percentage of fruit/flower) were recorded. To calculate the
biomass of consumed fruits, samples of fruiting plants were
obtained to determine the mean mass of their fruits.

Laboratory Analysis. In the laboratory, scat samples
were dried in an oven at a temperature of 60°C until they
reached a constant weight. Subsequently, samples were
disaggregated under water using a 0.5 mm mesh sieve and
examined under a stereoscopic binocular microscope (4-
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40X). Each food item was classified into one of seven main
categories:fruits;invertebrates (whichincluded crustaceans,
mollusks, arachnids, and insects); fish; amphibians; reptiles;
birds; and mammals (small and medium-sized species).
The classification of each item was conducted at the
most specific taxonomic level possible (species, genus,
family, or order), based on the identification of undigested
macroscopic structures such as seeds, exoskeletons, hair,
bones, and dental remains. The presence of guard hairs
in the scats was identified as an important tool in the
identification of mammal species, as proposed by Quadros
and Monteiro-Filho (20064, b). The identification of fruits
was achieved through a comparison of ingested seeds with
the morphological characteristics of seeds from the main
plant species in the MNP. The identification of both animal
remains and fruits was carried out with the assistance of
literature on regional flora and fauna and with the help of
specialists in the field (Giraudo et al. 2006; Casco et al. 2008;
Cano et al. 2011; Fontana 2017).

Dietary and Statistical Analyses. The diet of C. thous
and L. gymnocercus were analyzed based on three key
parameters: occurrence, percentage of occurrence, and
consumed biomass. These methods were utilized to
ascertain the significance of each food item and to facilitate
direct comparisons with other dietary studies on these
species and other carnivores (Pia et al. 2003; Bueno and
Motta-Junior 2004, 2006; Rodrigues et al. 2007). Occurrence
was defined as the frequency of a particular item relative
to the total number of occurrences (Queirolo and Motta-
Junior 2007), while percentage of occurrence was the
proportion of a given item relative to the total number of
items consumed (Pia et al. 2003; Bianchi et al. 2014).

Furthermore, for the animal items, the numerical
frequency percentage (PF) for each item was calculated by
determining the ratio between the minimum number of
individuals of each category recorded in all scats and the
sum of all individuals recorded across all prey categories,
multiplied by 100 (Farias and Kittlein 2008). The relative
biomass contributed by each animal item was estimated
by multiplying its biomass by the PF, and was expressed as
the total percentage of consumed biomass (BC) (Farias and
Kittlein 2008). In the case of small mammals and birds, the
consumption of biomass was calculated using correction
factors that had previously been estimated for Vulpes vulpes
(Linnaeus, 1758) (Ferreras and Ferndndez-de-Simén 2019).
The correction factor is a number that, when multiplied by
the total weight of indigestible matter, yields the original
weight of the prey ensuring an accurate estimation of
the ingested biomass from scat remnants. The biomass of
consumed fruits was estimated by multiplying the pulp
weight in grams of the found species by the number of
records of each item found in the diet (Rodrigues et al.
2007), and it was assumed that each fruit was ingested
whole. The body mass of animal prey was obtained from
extant literature (Canevari and Vaccaro 2007), whereas the
biomass of fruit was measured in situ.
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Figure 3. Frequency of consumption (%) of prey of different sizes, in grams, in the diet of canids Cerdocyon thous and Lycalopex gymnocercus in Mburucuya National Park, Corrientes,

Argentina (2014-2015).

The statistical analysis involved the assessment of
dietary similarity. We evaluated diet similarity for each
season using Pianka’s index: Ojk =X pij pik/(¥ pij2 pik2)1/2,
where pi is the frequency of occurrence of prey item i in
the diet of species j and k (Pianka 1973). Pianka’s index (O)
varies between 0 (total separation) and 1 (total overlap).
This approach facilitates comparisons with other studies
(Juarez_and Marinho-Filho 2002; De Almeida Jacomo
et al. 2004; Vieira and Port 2007; Bay-Joulia et al. 2024).
The trophic niche breadth was determined using the
standardized Levins index (Bstd), which is based on the
frequency of each food item and ranges from 0 (minimum
breadth) to 1 (maximum breadth). In order to establish
seasonal variations in the diet of the canids, the percentage
of occurrence of plant and animal items found in the
scats were compared using a Chi-squared test (Silva and
Talamoni 2003). For fruit consumption, a Chi-squared test
was utilized to evaluate selectivity (Martinez et al. 1993),
and the Spearman’s correlation coefficient (rs) was utilized
to ascertain the selection of resources to the seasonal
variation in the percentage of occurrence of fruiting species
(Silva and Talamoni 2003; Bueno and Motta-Junior 2006).
These statistical tests were selected based on similar studies
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conducted on the diets of canid species from the region,
such as Chrysocyon brachyurus (llliger, 1815) in Brazil and
Lycalopex griseus (Gray, 1837) in Chile (Silva and Talamoni
2003; Bueno and Motta-Junior 2006).

Results
We analyzed a total of 293 scat samples, comprising 129
from C. thous and 164 from L. gymnocercus. The analysis
of these samples revealed a total of 38 food item types,
including 11 of plant origin and 27 of animal origin. Animal
prey constitutes 41% of the total food intake for C. thous
and 49% for L. gymnocercus, with the remaining percentage
composed of fruit. The animal origin categories for both
fox species included invertebrates (crustaceans, mollusks,
arachnids, and insects) and vertebrates (fish, amphibians,
reptiles, birds, and small and medium-sized mammals)
(Table 1). Overall, fruits from a total of nine species, one
genus, and one family of plants were identified (Table 1).
The dietary overlap between C. thous and L.
gymnocercus was consistently high throughout the year.
For instance, the Pianka index showed a high value of
0.90 in summer, which decreased slightly to 0.75 in winter
(Table 2). However, the breadth of their respective trophic
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Table 3. Animal and vegetal estimated biomass consumed by canids, Cerdocyon thous and Lycalopex gymnocercus, Mburucuyéa National Park, Corrientes, Argentina (2014-2015).
References: n, number of records; NFP, Numerical Frequency Percentage; g, mass in gram; EB, Estimated biomass (g); CF, Conversion factors: passeriforme (CF = 45), Cavia aperea (CF = 44),
Small mammals (CF = 23).

Cerdocyon thous Lycalopex gymnocercus
FLESHY FRUIT PLANTS n NFP (%) Mass (g) EB n NFP (%) Mass (g) EB
Syagrus romanzoffiana 108 943 1018.4 36 9.4 3395
Butia yatay 161 6.4 1030.4 239 6.4 1529.6
Bromelia serra 15 57 86.1 14 57 80.4
Ocotea acutifolia 885 1.2 1044.3 370 1.2 436.6
Eugenia uniflora 38 0.5 18.6
Ficus luschnathiana 818 1.08 883.4 320 1.1 345.6
Citrus 5 230.7 11535 4 230.7 922.8
Chrysophyllum gonocarpum 22 10.2 2253
Chrysophyllum marginatum 200 0.1 28 975 0.1 136.5
Psidium guajava 15 234 351.3
Solanaceae 35 7 244 80 7 557.6
Subtotal 6083.3 43485
ANIMAL CATEGORIES
Gasteropoda (Pomacea canaliculata) 1 4.6 0.1 0.5
Crustacea (Trichodactylus kensleyi) 4 53 20 105.3 3 4.6 20 90.9
Ixodidae 3 15.8 0.1 1.6 1 4.6 0.1 0.5
Scorpionidae 3 53 0.6 3.2 1 4.6 0.6 2.7
Aranidae 1 4.6 0.6 2.7
Mantidae 1 53 0.6 3.2 1 4.6 0.6 2.8
Acrididae 96 53 0.7 37 63 4.6 0.7 3.2
Gryllidae 1 4.6 0.6 2.7
Tettigonidae 2 46 1 4.4
Lepidoptera 3 15.8 0.6 9.5
Formicidae 1 4.6 0.2 1.
Scarabeidae 6 53 1 53 14 4.6 1 4.6
Cicindelinae 2 53 0.2 1
Carabidae 1 53 1 53
Coleoptera not identified 3 53 0.6 3.2
Insecta not identified 61 53 0.6 3.2
Subtotal 144.2 1159
Fish not identified 1 53 100 526.3 1 4.6 100 454.6
Reptilia not identified 2 53 22 115.8 2 4.6 22 100
Culibridae 1 53 22 115.8 1 4.6 22 100
Lacertilia 2 53 22 115.8
Egg 1 53 10 52.63
Birds not identified 1 53 20 105.3 4.6 20 90.9
Passeriforme 8 4.6 20 4090.9
Cavia aperea 1 53 300 69473.7 2 4.55 300 60000
Hydrochoerus hydrochaeris 2 53 800.1 4210.5 2 4.55 800 3636.4
Small mammals not identified 7 53 20 24211 7 4.55 20 2090.9
Medium mammals 9 53 2000 10526.3 13 4.55 2000 9090.9
Subtotal 87663.2 79654.6
Total 93890.7 84119
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Figure 4. Percentage of plant species in scat samples of canids, Cerdocyon thous and Lycalopex gymnocercus, and percentage of plants with fruit in Mburucuya National Park (2015).

niches fluctuated monthly (C. thous: Bstd = 0.37 to 0.89;
L. gymnocercus: Bstd = 0.3 to 0.9), suggesting differences
in food consumption despite the overall dietary overlap
(Figure 2). Regarding the diet composition across seasons
(Table 2), C. thous showed a higher consumption of fruits
during the summer, primarily from B. yatay (22.1%), Ocotea
acutifolia (Nees) Mez (22.1%), and Ficus luschnathiana (Miq.)
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Mig. (14.2%). This seasonal variation, which included a
higher consumption of invertebrates and small mammals
throughout the study, was statistically significant (x2 =12.4,
P =0.0004). In contrast, the diet of L. gymnocercus did not
exhibit significant seasonal fluctuations (x2 =1, P = 0.32),
maintaining a consistent consumption of B. yatay fruits
(29.7%) and invertebrates (31%) in summer, and shifting
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Table 4: Fleshy fruits consumed (%) monthly in the diet of canids, Cerdocyon thous and Lycalopex gymnocercus, Mburucuyé National Park, Corrientes, Argentina (2015). References:

CT, C. thous; LG, L. gymnocercus.

January February May July August November

cT LG cT LG cT LG cT LG cT LG cT LG
Scat samples 37 25 23 40 26 15 12 32 10 8 4 13
Syagrus romanzofianum 1.6 16.7 16.7 18.8 53.8 286 20 16.7
Butia yatay 241 27.8 40.6 413 11.6 77 14.3
Bromelia serra 16.3 333
Ocotea acutifolia 35.2 259 25 3.2
Eugenia uniflora 40
Ficus luschnathiana 18.5 7.4 3.1 16 4.7 5.6
Citrus 7 16.7
Chrysophyllum gonocarpum 1.6
Chrysophyllum marginatum 20 50
Psidium guajava 6.3 1.6
Solanaceae 3.1 3.2

slightly to mammals (31.7% of small and medium-sized
mammals) and Syagrus romanzoffiana (Cham.) Glassman
fruits (19.5%) in winter (Table 2). The size of prey consumed
by both fox species ranged from 0.10 to 2000g (Figure 3),
with no significant differences between prey size categories
(x2 =1.28, df = 4, P = 0.87) for either species. In relation to
consumption frequency, invertebrates were the most
common food items (27.5% for C. thous and 29.5% for L.
gymnocercus). However, when considering the contribution
to the biomass consumed (Table 3), the diets of these foxes
were predominantly composed of small mammals, which
represented 78% to 81% of the total.

The selection of resources such as fleshy-fruited
species was similar for both fox species when comparing
the percentage of occurrence in scat samples with fruit
availability in the environment (Figure 4). Specifically,
between January and February 2015, the percentage
of consumed fruits exceeded the proportion of fruiting
species by 25% to 30%. In this period, a high consumption
of fruits from B. yatay, O. acutifolia, and F. luschnathiana was
observed in both species (Table 3). Notably, C. thous also
consumed fruits from Psidium guajava L. and Solanaceae.
This pattern shifted in the first months of winter, with a
lower consumption of fruits by C. thous. Conversely, L.
gymnocercus showed a significant peak in consumption of
fruits from Bromelia serra Griseb., S. romanzoffiana, Citrus L.,
and F. luschnathiana (Table 4).

The selection of resources by C. thous and L. gymnocercus
was evaluated by analysing the correlation between
the percentage of fruit occurrence in their diet and its
availability in different habitats during the summer and
winter seasons. During summer, no significant correlation
was observed for C. thous (rs = 0.47, P = 0.27). However, a
significant correlation was found between the diet of L.
gymnocercus and fruit availability (rs = 0.64, P = 0.04).

In summer, an association was observed between the
consumption of both foxes’ species and the availability of

fruits from specific plants, including S. romanzoffiana, O.
acutifolia, and F. luschnathiana in mesophileous forests,
and B. yatay in palm groves. In contrast, during the winter
season, the effect of fruits availability on their occurrence
percentage in the diet of C. thous (x2 = 33.52, P=0.03) and
L. gymnocercus (x2 = 27.24, P = 0.04) was significant. Our
dietary analysis identified fruits from S. romanzoffiana and
B. yatay, even though these had not been detected in the
field during vegetation surveys, while the highly available.

Eugenia uniflora L., Chrysophyllum gonocarpum (Hook.
& Arn.) Radlk., P. guajava, Citrus, and B. serra were either
minimally represented or completely absent from the diets
of C. thous and L. gymnocercus.

Discussion

This study analyzed the diet, trophic niche overlap, and
resource selection of two sympatric foxes, C. thous and
L. gymnocercus, in Mburucuya National Park (MNP), a
protected area within the Ibera Ecoregion, Argentina. The
objective was to compare their feeding strategies and
assess the potential niche overlap and/or partitioning
between these species. The dietary composition of C. thous
and L. gymnocercus in the MNP confirms their classification
as hypocarnivorous and omnivorous canids, an ecological
trend established by several studies across the Neotropics
(Varela et al. 2008; Vieira and Port 2007; Rocha et al. 2008;
Bay-Joulid et al. 2024). However, biomass analysis reveals a
crucial trophic dynamic governing coexistence within our
study area (MNP): whilst arthropods and insects exhibited
the highest frequency of occurrence (the most common,
yet lowest energy-yielding outcome), approximately
90% of the total consumed biomass for both species was
contributed by small and medium-sized mammals (e.g.,
Cavia aperea, Hydrochoerus hydrochaeris). This finding
shows that, despite the broad resource base explored,
the foraging strategy in the MNP is orientated towards
maximizing energy gain from specific animal items.
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In the diet of C. thous, a higher proportion of fruit was
found, which is similar to a study conducted in the Emas
National Park (Goids State, Brazil, 18°19" S, 52°45" W),
where vegetable items had a 60% occurrence (De Almeida
Jacomo et al. 2004). However, when compared with the
MNP, the Emas National Park has an area of 132,000 ha, with
a grassland predominance of 97% and a small presence of
Cerrado shrubs and riparian forests (3%). These differences
in vegetation are reflected in the differences in the plant
species consumed by C. thous in our study area. The diet
of L. gymnocercus in the MNP exhibited equal proportions
between plant and animal food categories throughout the
year. While this proportion is highly variable by location,
other studies report different trends. Varela et al. (2008),
for instance, discovered that fruits were predominant over
animal items in the wet and dry seasons (frequency of
occurrence: 69%) at the Los Colorados and Campo Grande
Biological Station (Salta, Argentina, 24°43’S, 63°17' W). In
that analysis, Sarcomphalus mistol (Griseb.) Hauenschild
was the predominant plant food source, followed by
arthropods and vertebrates. Similarly, at the Peruvian site
of Lambayeque, Lycalopex sechurae (Thomas, 1900), a
congeneric species, exhibited a highly hypocarnivorous
diet with a high occurrence (84.2%) of vegetable
items, dominated by Neltuma L. (70.5%), a protein and
carbohydrate-rich legume (Prokopiuk et al. 2000).

These variations in diet composition show that the
tendency towards hypocarnivorous or hypercarnivorous
diets is influenced by food resource availability. The diet
composition of C. thous and L. gymnocercus varies according
to the study site, ranging from strictly hypercarnivorous
diets (Farias and Kittlein 2008) to mixed diets and diets
that tend towards hypocarnivory, such as the percentages
of plant food occurrence above 50% determined in the
present study in the MNP and other protected areas of
the Ibera Ecoregion (Bay-Joulid et al. 2024) and other sites
in Argentina (Varela et al. 2008) and Brazil (De_Almeida
Jacomo et al. 2004). Consequently, the availability of trophic
resources, climate, and—potentially—social organisation
(Eisenberg and Redford 1999; Courtenay and Maffei 2004)
are influential factors in the diet of these canids.

Most of the consumed biomass by C. thous and L.
gymnocercus in the MNP consisted of mesomammals and
small mammals (90%), with Cavia aperea (Erxleben, 1777)
contributing the most significant amount (over 70%).
However, when the frequency of prey size was analyzed,
the most prevalent were those measuring between 0.10
and 10 grams (i.e. insects and arachnids). These results
were consistent with the diet of C. thous at the Itapetininga
Experimental Station in Sao Paulo (Brazil), which exhibited
a high consumption of insects (Acrididae), with some
individuals demonstrating hunting and capture behavior
towards small prey (Bueno and Motta-Junior 2004). With
regard to the consumption of C. aperea, evidence has been
documented of its consumption by C. thous in Brazil (Bueno
and Motta-Junior 2004; Pedé et al. 2006; Rocha et al. 2008),
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and by L. gymnocercus in Argentina (Farias and Kittlein 2008).

In relation to other prey species, two species of snakes
Helicops leopardinus (Schlegel, 1837) and Philodryas
olfersii latirostris (Cope, 1862) have been documented as
components of the diet of C. thous in the MNP and the San
NicolasPortal of the Ibera National Park (Corrientes province)
in Argentina (Ruiz-Garcia et al. 2020). The present study also
makes a novel contribution by documenting, for the first
time, the presence of the gastropod Pomacea canaliculata
(Lamarck, 1828), Phrynops hilarii (Duméril and Bibron, 1835)
eggs, and the freshwater crustaceans Trichodactylus kensleyi
(Rodriguez, 1992) in the diet of L. gymnocercus, in addition
to scorpions of the genus Bothriurus sp. (Peters, 1861).

The Pianka index indicated a high dietary overlap
between C. thous and L. gymnocercus in the study area, with
results analogous to those observed in Aparados da Serra
National Park in Brazil (Vieira and Port 2007). According to
these authors, this high overlap could be attributed to the
consumption of small mammals throughout the year, a
situation similar to the diet obtained for these species in the
MNP, where small mammals contributed the highest with
the consumed biomass. However, Vieira and Port (2007)
observed a lower percentage of fruit occurrences in their
diet, a phenomenon attributed, in part, to the prevalence of
grasslands and a limited variety of plant species that produce
fleshy fruits in the Aparados da Serra National Park (Brazil).

In the diet of C. thous and L. gymnocercus, the ingestion
of fleshy fruits varied seasonally, characterising an
opportunistic behaviour that was linked with MNP peak
fruiting. A distinctive finding of our research is the clear
manifestation of seasonal trophic plasticity in both foxes
and its relationship to the selective consumption of palms
(Butia yatay and Syagrus romanzoffiana). The consumption
of S. romanzoffiana during the winter should not be
regarded as a random trophic event, but rather an essential
adaptive strategy. We demonstrate that when the general
availability of fleshy fruits decreases drastically during
the cold season, both species switch to active foraging
behaviour specifically targeting this palm. This critical
resource allows both canids to maintain a fundamental
energetic contribution when other plant resources are
scarce. This temporal partitioning of key resources is the
mechanism that likely permits coexistence and mitigates
intra-quild conflict, as the exploitation of these key
resources during periods of scarcity reduces competitive
pressure within the shared ecological niche. The capacity
to modify their dietary breadth in this way evidences that,
whilst trophic overlap is high, seasonal flexibility mediated
by local resources maintains the stability of the predator
community in the MNP.

The dietary records of these foxes revealed the presence
of fruits from B. yatay, O. acutifolia, and F. luschnathiana
during the summer months, while in winter, fruits from S.
romanzoffiana, B. serra, F. luschnathiana, and Citrus were
documented. The evidence of the opportunistic behaviour
of L. gymnocercus was the correlation between the




consumption of fleshy fruits and its availability in summer,
a behaviour also observed for the species in the province
of Salta (Varela et al. 2008). During winter, when fruit
availability was scarce, both foxes exhibited active foraging
behaviour in search of certain plant species. This has been
considered key to the diet of frugivorous mammals in the
Paranaense rainforest of Misiones province (Argentina),
with S. romanzoffiana being a species that fructified more
than once and asynchronously (Giombini 2013). This
foraging behaviour has also been reported for Lycalopex
vetulus (Lund, 1842) in the Cerrado of Mato Grosso (Brazil),
where it consumed the fruits of Hancornia speciosa Gomes
during times of scarcity of other plant species, replacing
its consumption with fruits of Solanum lycocarpum A. St.-
Hil. when other species were abundant (Dalponde and
De Souza Lima 1999). However, the presence of fruit from
certain plant species (P. guajava) in the MNP does not
necessarily ensure their consumption by C. thous and L.
gymnocercus. A comparable behaviour was observed in
L. vetulus, whose diet exhibited minimal consumption of
bromeliad fruits, despite the presence of fruiting plants in
a context of a scarce supply of other edible plant species
(Dalponde and De Souza Lima 1999).

The implications of these findings for the conservation
of both species and the knowledge of their biology are
significant. The high niche overlap and remarkable dietary
plasticity of C. thous and L. gymnocercus confirm their
capacity as generalist and opportunistic predators. This
dietary flexibility provides them with high adaptability
to resource availability, a key trait for their survival in
complex, dynamic environments such as the Mburucuya
National Park, as well as in habitats that may be altered by
human activities. The confirmation of an active foraging
behavior, especially for key resources like palm fruits
during periods of scarcity, underscores the importance of
conserving these specific plant species and their habitats
to ensure the foxes’ food security. Finally, this study not
only contributes new records of trophic relationships but
also validates and expands knowledge on the mechanisms
of coexistence between these foxes, which is fundamental
for formulating effective management and conservation
strategies in the lbera region and in other areas where
these species are sympatric.

Conclusions

In this study, we assessed the diet, overlap, and the
selection of resources by C. thous and L. gymnocercus in a
comparative context within the MNP. The research aimed
to investigate the dimensions of their ecological niche,
evaluating potential overlapsintrophicresource utilization
and the mechanisms that facilitate their coexistence.
The results confirm the high dietary similarity between
the two species, both of which function as generalist
predators. Their diet is highly variable, composed of
common items such as fleshy fruits, invertebrates, and
small mammals, which contributed over 90% of the
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consumed biomass. The composition of food categories
exhibited seasonal variations, suggesting that foraging
patterns are influenced by changes in the availability of
resources throughout the year.

Thestudyalso confirmed a strong opportunisticbehavior
by the foxes in response to the availability of certain fruits,
particularly during summer. However, their diet was not
solely dependent on resource abundance; for example,
they actively foraged for palm fruits (S. romanzoffiana)
in the winter when other options were scarce, but they
avoided abundant fruits like P. guajava. These findings
highlight that coexistence between the two species is not
maintained through strict dietary partitioning but rather
through their flexible feeding strategies, which respond to
the dynamic availability of resources in a complex, multi-
habitat environment.
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Bats are the second most diverse order of mammals. There is evidence that bats assemblages are influenced by urbanization, exhibiting
changes in species diversity. Some species show a strong degree of adaptation to urban habitats or are even favored by them. Our aim was
to characterize the bat species composition present in the suburban park “Ecoparque Centenario”located on the Mexican Plateau, using two
different methods of species identification. Over the course of one year, mist nets were set up, and echolocation pulses were recorded using
an ultrasonic microphone. Species were identified based on their morphological characteristics and echolocation calls. Species accumulation
curves were generated, and diversity indices were calculated based on both morphological and acoustic analyses. In total, 28 bat species
belonging to four families were identified using both methods: Vespertilionidae (20 spp.), Molossidae (6 spp.), Mormoopidae (1 sp.) and
Phyllostomidae (1 sp.). The family Vespertilionidae was more represented, and the diversity indices indicated moderated diversity without
species dominance. In general, suburban areas have been shown to support higher bat diversity and activity due to an increase in potential
prey availability, benefiting both generalist and specialist species. Most of the species identified are listed as Least Concern according to the
IUCN, except Choeronycteris mexicana which is classified as Near Threatened. Considering this, Ecoparque Centenario represents an important
area for bat conservation within a semiarid landscape.

Keywords: acoustic monitoring, echolocation calls, Ecoparque Centenario, semiarid landscape, species accumulation curves, Zacatecas.

Los murciélagos son el segundo orden mas diverso de mamiferos. Existe evidencia de que los ensamblajes de murciélagos estaninfluenciados
por la urbanizacién, mostrando cambios en la diversidad de especies. Algunas especies presentan un alto grado de adaptacion a los habitats
urbanos, o incluso se ven favorecidas por ellos. Nuestro objetivo fue caracterizar la composicion de especies de murciélagos presente en el
parque suburbano Ecoparque Centenario, ubicado en la Meseta Mexicana, utilizando dos métodos diferentes de identificacién de especies. A
lo largo de un afio, se colocaron redes de niebla y se registraron pulsos de ecolocacion mediante un micréfono ultrasénico. Las especies fueron
identificadas con base en sus caracteristicas morfoldgicas y en los llamados de ecolocacidn. Se generaron curvas de acumulacién de especies
y se calcularon indices de diversidad a partir de los analisis morfolégicos y acusticos. En total, utilizando ambos métodos, se identificaron 28
especies de murciélagos pertenecientes a cuatro familias: Vespertilionidae (20 spp.), Molossidae (6 spp.), Mormoopidae (1 sp.) y Phyllostomidae
(1 sp.). La familia Vespertilionidae fue la mejor representada, y los indices de diversidad indicaron una diversidad moderada sin dominancia
de especies. En general, se ha demostrado que las dreas suburbanas mantienen una mayor diversidad y actividad de murciélagos debido al
incremento en la disponibilidad de presas potenciales, lo que beneficia tanto a especies generalistas como especialistas. La mayoria de las
especies identificadas estan categorizadas como de Preocupacién Menor segun la UICN, excepto Choeronycteris mexicana, que esta clasificada
como Casi Amenazada. Considerando lo anterior, el Ecoparque Centenario representa un area importante para la conservacion de murciélagos
dentro de un paisaje semiarido.

Palabras clave: ambiente semiarido, curvas de acumulacion, Ecoparque Centenario, llamados de ecolocalizacién, monitoreo acustico,
Zacatecas.
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Diversity patterns (henceforth, DPs) exist in all ecosystems
around the planet and are constantly changing due to
the interaction of abiotic and biotic factors in ecosystems
(Chesson 2000; Dirzo and Raven 2003; Brown et al. 2004;
Sibly etal. 2012;Villalobos and Rangel 2014). These changes
are generally reflected in the fluctuations in abundance,
diversity, or richness of the species distributed in a given
area. A clear example occurs in urban areas (i.e. geographic
spaces with human activity and presence, sensu Weeks)
(Weeks 2010), where these types of environments may
alter the habitat and therefore, the species composition
and dynamics (Rosenzweig 1995; Challenger and Dirzo

Bats are cosmopolitan, they are vagile and present
different functional traits, which allows them to be
distribute in different ecosystems, including urban
environments where they constitute a key component of
the mammalian fauna (Van der Ree and McCarthy 2005).
It has been observed that in urban environments richness
decreases for most bat species, whereas abundance
increase only for some groups that are able to adapt to the
new characteristics of the environment (generalist species)
(Segura et al. 2007; Jung and Kalko 2011; Clavel et al. 2011;
Threlfall et al. 2012; Biichi and Vuilleumier 2014; Jung and
Threlfall 2016). However, within the urban matrix, suburban

2009; Faeth et al. 2011).

areas (i.e. areas of lower human population density located
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BAT SUBURBAN DIVERSITY IN ZACATECAS

Figure 1. Geographic location of the “Ecoparque Centenario” (ECO) area. The Mexican Plateau is shown as the red silhouette. The state of Zacatecas is shown as black outline. The
municipality of Zacatecas is shown as bold black line (b) and yellow line (c-d). The Ecoparque Centenario is shown as red dot (b-c) and white line (d)

on the periphery of cities or urban areas) have shown a
higher bat species richness and abundance compared to
urban areas sensu Weeks (2010).

The presence of bats could be related to the
availability of food, shelter and foraging sites typical of
urban environments (Violle et al. 2007). Furthermore, the
modification of these sites and their characteristics can alter
bat diversity and consequently generate certain diversity
patterns (Russo and Ancillotto 2015). In general, suburban
areas have been shown to support higher bat diversity
and activity due to increase of potential prey’s number,
for generalist and specialist species equally (Shochat et al.
2004; Coleman and Barclay 2012; Luck et al. 2013).

Three hypotheses may explain this phenomenon: i) the
heterogeneity hypothesis, ii) the intermediate disturbance
hypothesis, and iii) the habitat productivity hypothesis.
Together they describe how richness and abundance vary
with the disturbance frequency and intensity. Disturbance
creates heterogeneity in the environment that, combined
with the addition of anthropogenic organic matter, increases
primary productivity and provides a greater number of
available resources (Connell 1978; Shochat et al. 2004;
Shochat et al. 2006; McKinney 2008; Gaston and Gaston
2010; Threlfall et al. 2011). Such DPs have been observed in
some vertebrate groups, such as bats (Duchamp et al. 2004).
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In Mexico most studies aimed at characterizing bat
diversity in urban or suburban environments, have focused
on tropical regions (Medellin 1993; Arita 1993), even
though, more than 50% of the national territory has a dry
or semi-dry climate type, where such studies are scare
(SEMARNAT 2015). The city of Zacatecas is characterized
by semi-dry climate, and the only available information
about bat diversity comes from the company URSAMEX
(2014), which was the responsible for the construction of
the suburban park “Ecoparque Centenario” (ECO), our study
area. They report 5 bat species: Mormoops megalophylla,
Leptonycteris nivalis, Myotis auriculus, M. planiceps and
Dermanura azteca, although 3 species distribution (L. nivalis,
M. planiceps and D. azteca) does not correspond to what
has been previously reported (Medellin et al. 2008; Ortega
et al. 2022). In addition, neither the identification methods
nor the sampling effort is presented, so the information is
incomplete and inaccurate. The ECOis surrounded by active
mines, and this site was recognized as a natural protected
area (URSAMEX 2014); it has been suggested that mines
can be used by different species of bats as perching sites,
which could favor their diversity. On the other hand, in
addition to the recognition, the area requires constant and
exhaustive diversity studies. Therefore, our aims were to
determine the bat diversity using 2 identification methods
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Figure 2. Echolocation calls (A) and photographs (B) of bat species captured. a) M. yumanensis, b) M. californicus, c) M. volans, d) M. ciliolabrum, e) L. ega, f) L. frantzii, g) C. townsendii,
h) T. brasiliensis, and i) C. mexicana.
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Table 1. List of bat species identified.

Family Genus Specie Morphologic Individuals Acoustic Acoustic Total Total
presences captured presences records presences detections
Vespertilionidae Antrozous pallidus 0 0 4 6 4 6
Baeodon alleni 0 0 8 21 8 21
Corynorhinus mexicanus 0 0 1 1 1 1
townsendii 4 6 8 23 1 29
Eptesicus fuscus 0 0 16 94 16 94
Lasiurus cinereus 0 0 32 330 32 330
ega 1 1 8 48 9 49
frantzii 1 1 14 36 14 37
intermedius 0 0 41 623 41 623
xanthinus 0 0 3 8 3 8
Myotis auriculus 0 0 22 127 22 127
californicus 8 1 32 237 34 248
fortidens 0 0 18 79 18 79
ciliolabrum 3 3 19 53 20 56
velifer 0 0 19 67 19 67
volans 3 3 28 262 28 265
yumanensis 6 10 31 341 35 351
Neoeptesicus brasiliensis 0 0 12 52 12 52
Parastrellus hesperus 0 0 4 9 4 9
Rhogeessa parvula 0 0 2 2 2 2
Mormoopidae Mormoops megalophylla 0 0 1 2 1 2
Molossidae Molossus nigricans 0 0 13 26 13 26
Nyctinomops aurispinosus 0 0 20 43 20 43
femorosaccus 0 0 8 13 8 13
laticaudatus 0 0 30 200 30 200
macrotis 0 0 11 24 11 24
Tadarida brasiliensis 1 1 32 341 32 342
Phyllostomidae Choeronycteris mexicana 1 1 0 0 0 1
Total 14 28 28 37 437 3068 449 3105

(acoustic and morphologic) and to estimate diversity index
in order to establish the patterns present in a suburban area
“Ecoparque Centenario” belonging to the Mexican plateau
during an annual cycle.

Materials and Methods

The Mexican plateau is located between the Western
and Eastern Sierras, and, in the south, it is limited by the
transversalvolcanaxis.Thisisan extensive areacharacterized
by altitudes near 2000 m asl. The predominant type of
vegetation is xeric scrub, pine-oak forest and isolated
patches of low deciduous forest (Rzedowski 2006). The ECO,
protected natural area belonging to the Mexican plateau, is
located in the Arroyo de la Plata micro-watershed, between
the Central Mesa and Western Sierra Madre physiographic
regions. The ECO is located at coordinates: 22° 46’ 49.14" N,
102032'37.96"W (Figure 1), between Zacatecas, Vetagrande
and Guadalupe municipalities; the park is in the border area
of the Zacatecas city, at an altitude of 2448 m asl, with an
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average annual rainfall of 400 mm to 450 mm. The climate
type corresponds to BSTkw (dry or semi-dry with temperate
regions and an average annual temperature that ranges
between 12 and 18 °C; Garcia 2004).

The predominant vegetation is induced grassland,
riparian vegetation, xerophytic scrub and Opuntia spp.
scrub (Rzedowski 2006). The tree density is composed by
pirul (Schinus molle) and mesquite (Prosopis sp.) along the
stream banks (URSAMEX 2014). Six sampling points were
selected near to water bodies and alternated according to
the annual season to increase the probability of bat capture
during the dry season. Four mist nets (2.5 x 6 m) were placed
alternately at the 6 points (Bell 1980; Kurta and Kunz 1988;
MacSwiney et al. 2008; Gilley and Kennedy 2010). Mist nets
were sampled for 5 days, each month, for one year, from
April 2022 to May 2023. They were opened during 5 hours,
after sunset with monitoring every 30 minutes (Holloway
and Barclay 2000; MacSwiney et al. 2008; Coleman and
Barclay 2012; Barboza-Marquez et al. 2014).




Table 2. Characterization of echolocation pulses (EPs) from bat species identified.

Martinez-Rodriguez et al.

Family Genus Specie Maxium Minium Peak Duration Bandwidth n
frequency frequency frequency (ms) (kHz)
(kHz) (kHz) (KHz)
Vespertilionidae Antrozous pallidus 59.1+£17.3 278+28 36.7 £ 6.7 93126 31.3+14.6 6
Baeodon alleni 98.5+4.4 333+21 465+ 1.3 51+0.6 65.2+53 21
Corynorhinus mexicanus 46.9£0.0 216+0.0 33300 123+0.0 253+0.0 1
townsendii 40.1+24 239+1.9 31.2+13 11.7+£29 16.1+£26 23
Eptesicus fuscus 514+53 27719 335+1.9 98+1.8 23.7+58 94
Lasiurus cinereus 498 +6.9 25619 327+26 119+24 242+6.8 330
ega 558+ 117 34+48 382+54 9.7+45 21.7+£82 48
frantzii 846+ 139 373x24 455+23 59+19 473 +153 36
intermedius 41.2+6.6 234=%15 282+1.6 12722 179+6.7 623
xanthinus 72973 328+1.0 39.1+1.2 78+07 401+79 8
Myotis auriculus 86.6 + 8.9 322+22 439+18 62+1.0 544+95 127
californicus 949+53 41.8+23 543+23 51+27 53.1+6.2 237
fortidens 98.7 £4.6 429+16 559+1.2 44+06 55.7+5.1 79
ciliolabrum 100.6 +£5.2 39.7+25 549+3.6 46+0.9 60.8 £5.2 53
velifer 835+113 378+1.7 46.1+29 57+0.6 456+11.1 67
volans 93.1+6.0 375+27 477 +27 55+0.7 556+6.5 262
yumanensis 96.9+5.6 427+28 546+3.9 4.7 +0.6 542+6.0 341
Neoeptesicus brasiliensis 53.7+4.1 30.8+1.9 37+20 109+1.7 229+4.5 52
Parastrellus hesperus 69.9+4.4 419+09 471+18 6.2+23 27.9+37 9
Rhogeessa parvula 87.9+0.6 41.7+15 53.9+0.0 3.8+0.2 46.2+2.1 2
Mormoopidae Mormoops megalophylla 57.6+1.2 415+07 54+0.2 6.4+1.0 16.1+1.8 2
Molossidae Molossus nigricans 35.1+3.7 257+16 30.1+£1.3 133+23 94+34 26
Nyctinomops aurispinosus 36.2+6.1 19.7+£0.8 264+1.8 143+1.7 16.4+6.3 43
femorosaccus 329+47 18+1.0 239+0.6 13219 14947 13
laticaudatus 354+6.6 207+1.0 256+1.8 13.8+£22 147 +£6.8 200
macrotis 277+33 174+28 215+19 149+23 10347 24
Tadarida brasiliensis 40.7 £ 8.6 24123 295+3.7 128+2.6 165+73 341
Total 3068

For acoustic monitoring, the Echo Meter Touch 2 Pro
ultrasonic microphone (connected to a tablet Lenovo
Xiaoxin Pad 2022) and Echo Meter software (Wildlife
Acoustics, Inc. Maynard, Massachusetts) were used to
record EPs. The detection range of echolocation calls was
set to a minimum frequency of 15,000 Hz with a sampling
rate of 384 kHz (Pettersson 2004). Acoustic monitoring was
semi-active and was conducted by walking the trail from
net to net and lasted as long as the mist nets remained
open (five hours per day; MacSwiney et al. 2020).

BatSound V4.1 software (Pettersson 2004) was used to
characterize search phases of the EPs, as they are relatively
constant compared to other types of bat vocalizations
(e.g. social pulses, feeding buzzes) (Fenton and Bell 1981;
O’Farrell and Miller 1999; Barclay 1999; Papadopoulos
and Allen 2007; Agranat 2013). EPs with an intensity less
than 30 dB were not considered for characterization,
since it has been determined that frequencies less
than this value tend to attenuate at short distances,

therefore higher intensity frequencies can travel farther
in the environment and consequently, be recorded
by ultrasonic microphones (Surlykke and Kalko 2008).
These parameters (measured in kHz) were: maximum
frequency (Fmax), minimum frequency (Fmin), peak
frequency, and bandwidth (the difference between Fmax
and Fmin), whereas intensity was expressed in dB, and
duration (DUR) in milliseconds (ms) (Corben 2004; Miller
2004). The values of each pulse were checked against
the “Compendio de Llamados de Ecolocalizacion de los
murciélagos insectivoros mexicanos” (Ortega et al. 2022)
and the SONOZOTZ echolocation call library (Zamora-
Gutiérrez et al. 2020). A species was assigned under the
concept of sonospecies in the case of meeting the above
assumptions, particularly Fmin, peak frequency and DUR
(Thomas et al. 1987). Morphological bat identifications
were made using the field keys in Medellin et al. (2008),
according to the diagnostic morphological characteristics
(Martinez-Rodriguez et al. 2024).
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Figure 3. Species accumulation curves and diversity estimators. (A) shows the identified species by acoustic monitoring (blue line = 27 spp.) and morphological identification (red line
=9 spp.). (B) shows the total presences data with both methods (green line = 28 spp.), upper confidence interval at 95% (blue line = 31.83) and lower confidence interval at 95% (orange

line = 24.17 spp.). (C) shows the total data (green line = 28 spp.), acoustic monitoring (cian line = 27 spp.), morphological identification (orange line = 9 spp.), ICE estimator (purple line =
30.14 spp.) and Chao 2 estimator (pink line = 29.47 spp.).
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Presence/absence data matrices were constructed for the
species identified by both methods. The diversity estimators
ICE (Incidence-based Coverage Estimators) and Chao 2 (Lee
and Chao 1994) were calculated using the EstimateS v 9.1
software (Colwell 2013). Species accumulation curves were
generated using the PAST v 4.17 software (Hammer and
Harper 2001) with i) acoustic and morphological data, ii)
the total observed data for the number of species and 95%
confidence intervals, and iii) the non-parametric estimators
(ICE and Chao 2), acoustic, morphological and the total
data observations with both methods (Chao et al. 2009).
Shannon, Margalef, Gini-Simpson and Berger-Parker indices
were calculated (Margalef 1972; Moreno 2001; Magurran
2007; Magurran et al. 2019) in order to elucidate the diversity
patterns in the suburban area.

Results

The total sampling effort was 59 days, 17,700 net-hours
and 10,215 acoustic recordings of which 3,068 met the
characteristics described in the methodology. Twenty-
eight species, 14 genera and 4 families were identified
(Table 1). Only 19 species were identified by analysis
of their EPs (Table 2); 8 species were identified using
both methods and one species was identified only by
taxonomic keys (Choeronycteris mexicana; Figure 2). The
family Vespertilionidae was the most represented with 9
genera and 20 species (71.4 %), with 7 species correspond
to the genus Myotis (25 %) and 5 to the genus Lasiurus
(17.8 %). Three genera and 6 species were included in
the Molossidae family (21 %), and the most represented
genus was Nyctinomops with 4 species (14.2 %). Only one
species was recorded in the families Mormoopidae and
Phyllostomidae, Mormoops megalophylla and C. mexicana,
respectively (7.1 %).

In the context of acoustic monitoring, the species with
highest number of occurrences were Lasiurus intermedius (n
=630), Myotis yumanensis (n = 341), Tadarida brasiliensis (n =
341), L. cinereus (n = 330), M. volans (n = 262), M. californicus
(n=237),and N. laticaudatus (n = 200). The species with the
fewest recorded occurrences were Corynorhinus mexicanus
(n = 1), Rhogeessa parvula (n = 2), and M. megalophylla (n
= 2). We also recorded L. ega (Figure 2 B, e), which has not
been previously registered in the north-central region of
the country.

For the morphological analysis, 37 specimens were
captured which corresponded to 3 families, 5 genera
and 9 species; 35 specimens and 7 species belong to
the Vespertilionidae (94.5%): M. yumanensis (n=10), M.
californicus (n=11), M. ciliolabrum (n=3), M. volans (n=3), L.
ega (n=1), L. frantzii (n=1), and C. townsendii (n=6). In the
families Molossidae and Phyllostomidae only 1 species
was captured: T. brasiliensis (n=1) and C. mexicana (n=1),
respectively. The photographs and EPs corresponding to
each species are shown in Figure 2, except for C. mexicana
(Figure 2 B, i) considered a “whispering” species due to its
EP’s characteristics (low intensity and high frequency).
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The first accumulation curve (Figure 3 A) shows the
differences in the number of species recorded between the
identification methods used. While acoustic monitoring (blue
line = 27) tends to asymptote, morphological identification
(red line = 9) shows no signs of saturation. Figure 3 B shows
the total data (green line = 28), which indicates that both
methods cover 87.96% of diversity according to the upper
confidence interval (blue line = 31.83). However, figure 3 C
shows that the sampling effort was satisfactory according
to the diversity estimators ICE (blue line = 30.12) and Chao 2
(pink line = 29.47), which suggest that between 92.89 % and
95 % of the richness was recorded in the study area. Acoustic
monitoring (cyan line = 27) recovered between 89.58%
(ICE) and 91.6% (Chao 2) of the richness. Morphological
identification (orange line = 9) recorded between 29.86%
(ICE) and 30.5% (Chao 2) of the richness.

The value for Margalef specific diversity index was R =
4.421, which indicates a moderate diversity. The Shannon
diversity index had a value of H'=3.073, which also indicates
moderate diversity in the study area. For the Gini-Simpson
index, a value of 7-D = 0.9474 was obtained; this value
indicates that there is a high probability of obtaining two
different species from a random sample, thus indicating
that there is no species dominance in the study area.

Finally, the value obtained for the Berger-Parker index
was D=0.09131, indicating that the species with the highest
proportion of occurrences in the sample represents 9.1%
of the recorded richness, therefore, there is no indication
of dominance of any species in the study area. With these
values, together with the bat diversity composition, we
can infer that the ECO complies with the hypothesis of
intermediate disturbance.

Discussion

The most represented bat family in our sample was
Vespertilionidae (20 spp.), followed by the Molossidae (6
spp.). The diversity composition recorded in this study is
consistent with previously described diversity patterns in
arid and semiarid climates of the Mexican plateau and the
south of Arizona (USA) (e.g. Ortega and Arita 1998; Lépez-
Gonzélez et al. 2015; Segura-Trujillo et al. 2016; Bazelman
2016; Dwyer 2021; Segura-Trujillo et al. 2022; Ramos-H et al.
2024). Because the study site is nearby to the transitional
zone between the Nearctic and Neotropical biogeographic
regions, it is possible to find elements of Neotropical origin,
such as species of the families Molossidae, Mormoopidae,
and Phyllostomidae (Ortega and Arita 1998; Lopez-
Gonzélez et al. 2015). In this study these elements represent
only 8 species (i.e. 28.5% of the total sample).

Inrelation with the generalist and specialist bat species,
previous studies have determined that at least 10 of the
28 identified species in this study are generalists, whose
presence is correlated with suburban environments (T.
brasiliensis, E. fuscus, M. yumanensis, M. californicus, M.
velifer, M. volans, N. macrotis, L. xanthinus, L. intermedius
and M. megalophylla) (Avila-Flores and Fenton 2005;
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Dixon 2012; Bazelman 2016; Rodriguez-Aguilar et al. 2017;
Adams 2021; Dwyer 2021; Dwyer et al. 2024; Briones-
Salas et al. 2024). However, it has been reported that the
species N. femorosaccus, C. townsendii, N. brasiliensis, M.
auriculus, P. hesperus and C. mexicana have specialized
habits, with relatively low activity levels in urban areas
(Husar 1976; Arroyo-Cabrales et al. 1987; Bazelman 2016;
Rodriguez-Aquilar et al. 2017; Dwyer 2021; Dwyer et al.
2024). In addition to having specialist habits, C. mexicana
has been classified as near threatened by the IUCN (Solari
2018). Therefore, this work contributes to generating
information to make decisions about conservation
strategies for species that can inhabit suburban habitats
in the Mexican plateau.

Evidence suggests that species of the genus Lasiurus
(L. frantzii, L. ega, L. cinereus and L. intermedius) tolerate
intermediate levels of urbanization. However, given their
foraging and refuge site characteristics, they tend to avoid
such environments. The exception is L. xanthinus, which has
not been reported reduce its presence in habitats due to
increased urbanization (Aguilar et al. 2013; Dwyer 2021).

According to Moreno and Halffter (2001), it is necessary
to recover a minimum of 90 to 95 % of the bat diversity
to ascertain that the sampling effort was sufficient. We
recovered between 92.89 % (ICE) and 95 % (Chao 2),
indicating a satisfactory sampling effort. This is due to the
use of twoidentification methods, which have been deemed
optimal in suburban environments or areas characterized
by minimal vegetation cover, such as xerophytic scrub
vegetation (Rautenbach et al. 1996; Kuenzi and Morrison
1998; Rydell et al. 2002; Berry et al. 2004; MacSwiney et al.
2020). Furthermore, these methods are complementary
to each other, and their efficiency varies depending on
habitat characteristics and the trophic guild to which the
bat species belong (i.e. open space aerial foragers, closed
space aerial foragers, surface foragers, and edge space
foragers). For instance, numerous authors (e.g. O’Farrell
and Miller 1999; Kalko et al. 2008; MacSwiney et al. 2008)
have mentioned that acoustic monitoring has been found
to be the most efficient in recording species that forage
in open spaces, while mist nets have been determined to
be optimal for capturing species that forage in closed or
surface spaces (La Val 1970; Kunz 1973; Kunz and Brock
1975; Kuenzi and Morrison 1998; Rydell et al. 2002; Larsen
et al. 2007). This distinction is evident in the accumulation
curves of each method and the feeding habits reported in
previous studies (Mora-Villa et al. 2014; Segura-Trujillo et
al. 2016). Acoustic monitoring recorded 13 genera and 27
species (96.4% of the sample), of which six molossid species
belonged to the guild of open-space aerial foragers and at
least 17 species of Vespertilionids belonged to the guild of
edge-space foragers.

In the other hand, the morphological identification
recorded 9 spp. of which 8 were also identified through their
EPs, and which mostly belong to the guild of closed-space
foragers and edge-space foragers. The only exception was C.
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mexicana which feeds on pollen and nectar from Agavaceae
flowers and has EPs that are complicated to record, like
other Phyllostomids species, but they are relatively easy to
capture with mist nets (Kunz and Kurta 1988; Simmons and
Voss 1998; Clarke et al. 2005; MacSwiney et al. 2008; Pérez-
Herndndez and Martinez-Coronel 2023). In addition, the
combined methods allowed us to identify acoustically and
morphologically the species L. ega, which some authors
have reported that it is distributed mainly on the slope of
the Gulf of Mexico (Medellin et al. 2008; Barquez and Diaz
2016; Ortega et al. 2022), although others mention that
its distribution includes the north-central region of the
country (Kurta and Lehr 1995). Because of this uncertainty
and the migratory habits of this species, it is imperative to
provide information on the distribution of the species in
the arid and semiarid regions of the country, where studies
are limited.

In the context of acoustic characterization, it was
observed that the Fmin values recorded for all the 27 species
matched the values of the “Compendio de Llamados de
Ecolocalizacion de los murciélagos insectivoros mexicanos”
and the SONOZOTZ echolocation call library (Ortega et al.
2022). The recorded Fmax values differ in 5 species (Lasiurus
xanthinus, L. cinereus, M. megalophylla, Molossus nigricans and
N. laticaudatus). Conversely, peak frequency values differ in
one species (Corynorhinus townsendii) and the recorded DUR
values differ in 17 spp. (Antrozous pallidus, Baeodon alleni, C.
mexicanus, C. townsendii, Eptesicus fuscus, L. cinereus, L. ega,
L. frantzii, M. ciliolabrum, M. auriculus, Parastrellus hesperus, R.
parvula, N. aurispinosus, N. femorosaccus, N. laticaudatus, N.
macrotis and T. brasiliensis).

The parameters that exhibited the most discrepancy was
Fmax and DUR, which may be associated with the capacity
of bats to decrease Fmax and increase DUR in response
to the climatic and structural characteristics of the site.
This phenomenon can be a strategy employed by bats to
mitigate atmospheric attenuation and avert the masking of
their EPs by anthropogenic sounds in this context (Thomas
et al. 1987; Wund 2006; Gillam et al. 2009).

The calculated diversity indices values suggest that the
study area has a moderate bat diversity (H' = 3.073, R =
4.421,1-D = 0.9474 and, D = 0.09131). There is a possibility
that this is due to the suburban park characteristics
(i.e. moderate levels of urbanization, tree cover, water
bodies and streetlights) and the presence of caves and
abandoned mines in the vicinity of the ECO. Several studies
have documented that these features may explain why
the richness of bat species was higher in suburban parks
or in suburban areas due the presence of available roost
and foraging sites for different species of bats (Kurta and
Teramino 1992; Gehrt and Chelsvig 2008; Loeb et al. 2009;
Russo and Ancillotto 2015). In addition, we inferred from
the calculated values of each index and the suburban
characteristics of the environment, the diversity pattern
present in the ECO polygon corresponds to the hypothesis
of intermediate disturbance.




This hypothesis states that species can take advantage
of moderately altered habitats and increase the richness
and diversity in general (Connell 1978; Castro-Luna et al.
2007; Threlfall et al. 2011; Dodd et al. 2012). Our study is
an example of how systematic and formal studies about
diversity of bats using 2 methods of identification, can
elucidate and provide information about the species
distribution and their EPs characteristics in regions where
these types of studies are limited. In addition, it is important
to highlight the importance of its implementation to
reduce bias regarding the diversity of bats present. In our
case, for example, the company URSAMEX (2014) mentions
that they identified five species of bats, but three species
do not correspond to the reported distribution, moreover
statistical methods were not used to evaluate the sampling
effort, and only one identification method was used, which
could have underestimated the diversity of bats present in
the park. In fact, we only identified two of these mentioned
species which correspond to Mpyotis auriculus and
Mormoops megalophylla. This is an example of how the use
of complementary methods for bat species identification
can expand and provide accurate information about the
actual knowledge of diversity at the local level in this type
of environment which cover a Mexican plateau.

Conclusions

We registered 28 bat species with two methods of
identification. Our study represents the first formal and
systematic listing of bat species in a suburban environment
in the Mexican plateau region and particularly in the
state of Zacatecas. In addition, we registered the species
L. ega which was not reported in the region. Finally, our
sampling effort was satisfactory, and the bat diversity
pattern identified in the ECO corresponds to the pattern
observed in the north-central region of the country, that
is, a greater representation of the families Vespertilionidae
and Molossidae. Furthermore, according to the calculated
diversity indexes values, it is inferred that the suburban
characteristics of Park maintain a moderate diversity of
chiropteran species and it is suggested that it corresponds
to the pattern of the intermediate disturbance hypothesis.
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The distribution of the Neotropical otter (Lontra annectens), recently recognized as a separate species after its taxonomic separation from
Lontra longicaudis annectens, in central Mexico is poorly known. This study aimed to update its distribution in the State of Mexico using a
potential distribution model and field validation to identify priority areas for conservation. The model was generated with the kuenm package
in R, incorporating topographical, climatic, and ecological variables. The presence of the species was verified at nine model-predicted sites
based on interviews and field trips carried out between April 2024 and March 2025, including expeditions in rivers in the municipality of
Temascaltepec. The model predicted an approximate potential distribution of 5300 km of suitable water bodies, representing only a fraction
of the state territory. Field validation confirmed the presence of the species in the Telpintla, Grande, and Chilero rivers and documented the
Vado River, Temascaltepec, for the first time. Additionally, interviews confirmed its presence in Malinalco and adjacent areas. These findings
update the distribution of L. annectens in the State of Mexico and identify areas with high ecological suitability that should be prioritized for
its conservation.

Keywords: State of Mexico, indirect evidence, distribution models, new records, Temascaltepec.

La distribucién de la nutria neotropical (Lontra annectens), recientemente reconocida como especie independiente tras su separacién
taxondémica de Lontra longicaudis annectens, es poco conocida en el centro de México. Este estudio tuvo como objetivo actualizar su distribucién
en el Estado de México mediante un modelo de distribucion potencial y su validacion en campo, con el fin de identificar areas prioritarias para
la conservacion. El modelo se generd con el paquete kuenm en R, utilizando variables topograficas, climaticas y ecolégicas. La presencia de la
especie se verific en nueve sitios predichos por el modelo a partir de entrevistas y recorridos de campo realizados entre abril de 2024 y marzo
de 2025, incluyendo exploraciones en rios del municipio de Temascaltepec. El modelo predijo una distribucién potencial aproximada de 5,300
km de cuerpos de agua adecuados, lo que representa solo una fraccion del territorio estatal. La validacion en campo confirmé la presencia
de la especie en los rios Telpintla, Grande y Chilero, y registré por primera vez el rio Vado, Temascaltepec. Adicionalmente, las entrevistas
corroboraron su presencia en Malinalco y dreas cercanas. Estos resultados permiten actualizar la distribucion de L. annectens en el Estado de
Meéxico e identifican zonas con alta idoneidad ecolégica que deben considerarse prioritarias para su conservacion.

Palabras clave: Estado de México, evidencias indirectas, modelos de distribucién, nuevos registros, Temascaltepec.
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Otters are regarded as of great ecological importance
because they are top predators in aquatic ecosystems and
are sensitive to drastic environmental changes (Gémez-
Nisino 2006; Sanchez et al. 2007; Monroy-Vilchis and Mundo
2009; Ramos-Rosas et al. 2012). The Neotropical otter, also
known as “water dog’, has recently been recognized as a
separate species. Recent analyses of nuclear genome data
have revealed a marked genetic separation between trans-
Andean Neotropical otters, Lontra annectens (Mayor 1897),
and the other cis-Andean otters (de Ferran et al. 2024).

In Mexico, this species thrives in various aquatic
ecosystems, including rivers, streams, lagoons, lakes,
mangroves, and reservoirs. It shows a wide and varied
geographical distribution, ranging from sea level in the

Pacific and Gulf of Mexico coasts and mangrove areas,
to altitudes above 1000 m a.s.l. in the Mexican plateau,
parts of the Trans-Mexican Volcanic Belt and Sierra Madre
del Sur, as well as in mountainous areas and upper river
basins in the states of Oaxaca, Chiapas, Puebla, Veracruz
(Gallo-Reynoso 1989; 1997), Sonora and Chihuahua (Gallo-
Reynoso et al. 2019).

Despite its broad distribution and its status as a
bioindicator species (Gémez-Nisino 2006; Sanchez et al.
2007; Monroy-Vilchis and Mundo 2009; Arellano Nicolas et
al. 2012), the Neotropical otter faces various threats that
have adversely impacted its populations and distributionin
some regions of Mexico. The main threats include pollution
of rivers and lakes, deforestation, habitat degradation,
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poaching, and infrastructure development such as river
canals and hydroelectric facilities (Gallo-Reynoso en
Chehébar 1990; Gallo-Reynoso 1997; Rheingantz et al.
2017;2021). In general, the threats facing Lontra longicaudis
have been identified. However, given its reassignment to
Lontra annectens, these have not yet been fully determined,
making it necessary to characterize these threats, its
potential distribution, and its state of conservation. The
International Union for Conservation of Nature (IUCN)
has listed this species as “Near Threatened” and reports a
decreasing population trend (Rheingantz et al. 2021). In
Mexico, it is listed as endangered in the short to mid term
under the Mexican Standard NOM-059-SEMARNAT-2010
(DOF 2019).

The geographical distribution of the Neotropical
otter proposed by the IUCN does not include the central
region of Mexico. However, the presence of this species in
the State of Mexico was documented in 1576, when the
hunting of a “water dog” was recorded in the Santa Cruz
Coacalco Lagoon (Gallo-Reynoso 1989). Later, in 1981, the
species was recorded in Malinaltenango (Gallo-Reynoso
1989). In the southern area of the State of Mexico, its
presence was documented in rivers and streams in Villa
Guerrero, Santo Tomas, Temascaltepec, Zacazonapan,
and Bejucos through indirect evidence, including tracks,
feeders, and interviews with inhabitants and fishers in
the region (Gallo-Reynoso 1989). Then, the presence
of the species in the municipality of Temascaltepec was
confirmed in 1998 (Brito-Cruz et al. 1998).

The latest records of the species in the State of Mexico
correspond to the Temascaltepec region (Simén-Martinez
2003; Monroy-Vilchis and Mundo 2009; Guerrero-Flores et
al. 2013). However, this area, like many others in the state,
is undergoing an accelerated landscape transformation
associated with the expansion of agriculture and livestock
raising (SEMARNAT 2016), which has transformed the
riparian ecosystems and reduced the availability of shelters
and resources, jeopardizing the quality and availability of
suitable habitats for the species (Gallo-Reynoso 1997).

In Michoacan, there are confirmed records of otter
in the Balsas River basin, particularly in areas with clean
rivers and well-conserved riparian vegetation, as well as in
mountainous regions of the eastern part of the state and the
Pacific coast (Monterrubio-Rico and Charre-Medellin 2014).
Similarly, its presence has been documented in the Sierra
Norte de Puebla (Ramirez-Bravo 2010) and the Huasteca
Hidalguense (Aguilar-Lépez et al. 2015; Hernandez-Silva

2000). These models enable the integration of ecological
information into the design of conservation strategies
based on scientific evidence (Franklin and Miller 2010).
Additionally, these models can be useful for anticipating
areas at risk of invasion or conflict between humans and
wildlife (Peterson et al. 2011).

As information on the distribution and state of the
habitat of this species in central Mexico is scarce and
outdated, the main objective of this study was to produce
a potential distribution model for the Neotropical otter in
the State of Mexico, supplemented with verification field
work to determine its presence and distribution, aiming
to identify the most suitable areas for conservation. This
research not only contributes to the preservation of an
emblematic species but also supports the conservation
of aquatic biodiversity by providing a scientific basis for
decision-making in environmental policy and education.

Materials and methods

Study area. The State of Mexico, located in the central region
of the country, covers 22 351 km? (Figure 1). It is part of the
Trans-Mexican Volcanic Belt, characterized by mountainous
areas, valleys, and riparian and lake basins with elevations
ranging from 300 m to more than 4600 m a.s.l. at the
highest peak of the state, Nevado de Toluca (INEGI 2020).
The regional climate is temperate-subhumid and cold
in the mountains and warm-subhumid in the southern
region. The mean annual temperature ranges from 12 °C to
22 °C. Annual precipitation ranges from 600 to 1500 mm,
with most falling from May to October (CONABIO 2008).
The predominant vegetation types are fir forest, mountain
cloud forest, pine forest, pine-oak forest, oak forest, oak-
pine forest, low deciduous forest patches, and induced
grassland (CONABIO 2011).

The state is located in the “Lerma-Chapala-Santiago’
hydrological basin in the central-western zone, which
encompasses approximately 2900 km of rivers and streams
(CAEM 2023). The Lerma River, its main tributary, is heavily
polluted as it flows through the Toluca Valley industrial
zone (Carrefio de Ledn et al. 2018). The “Alto Panuco”area —
the driest in the state — is located in the north, with annual
precipitation below 600 mm, creating semiarid conditions
(CAEM 2023). In contrast, the southern region comprises
the Balsas River basin, where high precipitation and local
topography result in approximately 230 interconnected
rivers and streams totaling more than 5300 km (CAEM
2023), which can be key to the presence of otters. The

4

et al. 2024), where aquatic systems remain well preserved.
In contrast, there are no recent records from Tlaxcala and
Morelos, although its presence has been inferred from basin
connectivity with adjacent regions, such as Puebla and the
State of Mexico (Sierra-Huelsz and Vargas-Contreras 2002).

At the local scale, the use of species distribution models
has been instrumental in identifying areas with optimal
conditions for reintroducing locally extinct species or for
establishing new protected areas (Guisan and Simmermann

Temascaltepec sub-basin originates at the peak of Nevado
de Toluca, at 4595 m a.s.l. The stream flows to 800 m a.s.l.
before reaching the Tingambato Hydroelectric Power Plant,
in the state of Michoacan. It then joins the Tilostoc River,
a tributary of the Cutzamala River, which, farther down,
joins the Balsas River. The Temascaltepec River is the main
watercourse in the region and plays a key role in aquatic
connectivity and habitat availability for otters (Manzo
Delgado and Lépez Garcia 1997).
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Figure 1. Study area showing the historical accessibility hypothesis (M area) delimited in green and its intersection with the distribution polygon proposed by IUCN for Lontra

annectens. The State of Mexico is highlighted.

There are 84 protected natural areas of various
categories, including the Nevado de Toluca Flora and Fauna
Protection area; the Valle de Bravo-Tilostoc-Temascaltepec
Basin Natural Resources Protection Area; and the Sierra
de Nanchititla State Flora and Fauna Protection Area
(CEPANAF 2023). These regions can play a fundamental
role in Neotropical otter conservation by providing more
stable environmental conditions and low anthropogenic
disturbance, being an object of spatial evaluation and
interpretation of results in distribution models (CONABIO
2023),inaddition to supplying water to nearby communities
and the Cutzamala System of Mexico City.

Potential distribution map. A calibration area was
delimited based on the map of terrestrial ecoregions of
Mexico (SD1, INEGI-CONABIO-INE 2008), focused on the
central region of the country. This area represents the
historical accessibility hypothesis for the Neotropical otter,
known as the M area within the conceptual framework of
the BAM diagram (Figure 1; Soberén et al. 2017).

We conducted a comprehensive literature survey and
review of records of L. annectens for Mexico, particularly in
the State of Mexico and neighboring states, considering
the calibration area (Figure 1; SD2). We considered records

for the period 1987-2024, which corresponds to the time
interval used for constructing the environmental variables,
to ensure that the model adequately reflects the ecological
conditions of the species and avoid bias when estimating
its potential distribution (Araujo and Peterson 2012).

Records lacking explicit geographic coordinates were
georeferenced using the localities described in the original
sources that included information on the municipality, the
locality, or proximity to a water body. To this end, we used
topographic maps at a 1:250 000 scale. To minimize spatial
bias and avoid overfitting in areas with higher sampling
effort, duplicate records were excluded using a 1 km
spatial filter between points, implemented with the spThin
package in R (Aiello-Lammens et al. 2015). This distance
was considered adequate, given the spatial resolution
of the environmental layers used. This process yielded
105 presence records, which were randomly divided into
two subsets: 70% for calibration (74 records) and 30% for
evaluation (31 records).

Topographic, climaticc, and ecological variables
were examined based on ecological factors relevant to
Neotropical otters (Table 1). These layers were either
included or excluded from the variance inflation factor (VIF)
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Figure 2. Potential distribution of Lontra annectens in central Mexico, showing the literature records obtained and the predicted suitable areas. Each record in the map represents a

sampling locality. a) Continuous model; b) binary model.

to reduce collinearity between environmental variables.
This process enabled the identification of highly correlated
variables that may be redundant in explaining the
distribution of the species (Aiello-Lammens et al. 2015). VIF
values were calculated considering aVIF exclusion threshold
>10. Variables that exceeded this value were excluded, and
only those with low or moderate collinearity (VIF < 10) were
selected for the final modeling of the potential distribution
(SD3). All environmental variables were standardized to a
spatial resolution of 1 km and delineated according to the
defined calibration area.

Candidate models were created using the kuenm
package in R (Cobos et al. 2019). This package implements
the MaxEnt algorithm (Phillips et al. 2006; Phillips and Dudik
2008), enabling evaluation of various sets of environmental
layers across multiple configurations. In Maxent, we
explored 10 values of the regularization multiplier (0.2,
0.4, 06,08, 1,1.2, 1.4, 1.6, 1.8, 2) and 31 combinations of
features (I, q, p, t, h, Iq, Ip, It, Ih, gp, qt, gh, pt, ph, th, Igp,
Iqt, Igh, Ipt, Iph, Ith, gpt, gph, qth, pth, Igpt, Igph, Igth, Ipth,
gpth, Igpth).

The regularization multiplier controls model complexity
by penalizing overfitting; larger values tend to produce
more generalized models that are less fitted to the training
data, whereas smaller values produce more specific and
fitted models (Merow et al. 2013; Morales et al. 2017).
On the other hand, features determine the relationship
between potentiality and environmental variables, thereby
influencing the flexibility of the model in representing
complex distributions and ecological niches (Phillips
and Dudik 2008; Elith et al. 2011). In this sense, the joint
evaluation of both hyperparameters facilitates balancing fit
and predictive capacity, thereby increasing the robustness
and transferability of the resulting models (Warren and
Seifert 2011).

The performance and selection of the best model
were evaluated based on the statistical significance of the
partial ROC curve (Cobos et al. 2019), omission rates (OR),
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Table 1. Environmental variables used to model the potential distribution of Lontra
annectens.

Variables Source

Topographic variables

Mexican Elevation
Continuum MEC -
INEGI (2013)

Slope EarthEnv (2010)

Climatic variables

Digital Elevation Model (DEM)

<hurs> Near-surface relative humidity
hurs_max / hurs_mean / hurs_min / hurs_range

<rsds> Downward surface shortwave radiation
rsds_max / rsds_mean / rsds_min / rsds_range

<pet> Potential evapotranspiration
pet_max / pet_mean / pet_min / pet_range

<cmi> Climatic moisture index
cmi_max / cmi_mean / cmi_min / cmi_range

<swb> Site water balance

<npp> Net potential primary productivity
Bio 1. Mean annual temperature

Bio 2. Mean diurnal range

Bio 3. Isothermality

Chelsa BioClim+
(1981-2010)

Bio 4. Temperature seasonality

Bio 5. Maximum temperature of the warmest month
Bio 6. Minimum temperature of the coldest month
Bio 7. Annual temperature range

Bio 10. Mean temperature of the warmest quarter
Bio 11. Mean temperature of the coldest quarter
Bio 12. Annual precipitation

Bio 13. Precipitation of the wettest month

Bio 14. Precipitation of the dryest month

Bio 15. Precipitation seasonality

Bio 16. Precipitation of the wettest quarter

Bio 17. Precipitation of the dryest quarter

Ecological variables

Landsat Normalized Difference Vegetation Index

(NDVI) INEGI (2013)

Landsat Index of Surface Quality Water from Space INEGI (2013)

Anthropogenic variables

Ecosystem Integrity Index (Ell) CONABIO (2018)
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Figure 3. New records of L. annectens in the Temascaltepec region and interviews in potential sites in the State of Mexico. Yellow dots mark interviewed localities with no evidence
of the presence of otters; red dots indicate sites with confirmed Neotropical otter presence; and green dots are the records obtained during our sampling in the Temascaltepec region.
Localities: 1) Villa Victoria; 2) San José Villa de Allende, Villa de Allende; 3) La Penia, Villa de Allende; 4) Parque el Salto Chihuahua, Ixtapan del Oro; 5) Casas Largas tourist corridor, Ixtapan
del Oro; 6) Santo Tomas; 7) Temascaltepec; 8) Tonatico y 9) El Platanar, Malinalco. Records: a) spraints in the Vado River, b) feeder in the Chilero River, and c) spraints in the Grande River.

and the Corrected Akaike Information Criterion for small
sample sizes (AICc). A 10% omission was considered, and
10 replicates per bootstrap were applied. From the final
model, a binary model was generated from the tenth
percentile as a cut-off threshold to discriminate between
suitable and unsuitable areas for the species. All analyses
were performed in ArcMap 10.3 (Esri 2014) in R version 4.2.2
(R Core Team 2018).

Field confirmation of Neotropical otter presence. The
presence of otters was confirmed through field interviews
and transects. To this end, we selected nine sites based on
habitat suitability predicted by the potential distribution
model in the State of Mexico. These nine sites were visited
during 2024 and 2025 to confirm the presence of Lontra
annectens. The local inhabitants were interviewed in each
site to obtain information about possible sightings or
indirect evidence of the species. At each site, records were
georeferenced using a GPS receiver (Garmin GPSmap 64s)
and fed into a database.

Results

Potential Neotropical otter distribution. A total of 310 candi-
date models were evaluated, whose parameters reflect all
combinations of 10 regularization multiplier configurations,
30 fitting-model combinations, and 15 environmental
variables (SD4 and SD5). Of this set, only one model (M_2_F_
Ip) met the established performance parameters.

The potential distribution area for otters in the
calibration region corresponds to 23.97% (Figure 2).
Specifically in the State of Mexico, the potential distribution
area covers approximately 6162 km2 However, considering
the semiaquatic behavior of the species, we estimate
that the area effectively usable for the Neotropical
otter corresponds to nearly 5300 km of water bodies,
approximately equivalent to the total length of the rivers
running across the state, which represents only a small
fraction of the state territory.

According to the potential distribution model, suitable
regions for otters include the Temascaltepec sub-basin in
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the southwest and the Malinalco region in the southeast of
the State of Mexico. In turn, the Temascaltepec sub-basin
is part of the “Valle de Bravo, Malacatepec, Tilostoc, and
Temascaltepec River Basins” Natural Resource Protection
Area (APRN, in Spanish) (CEPANAF 2023), which includes
the municipalities of Amanalco, Donato Guerra, Ixtapan
del Oro, Otzoloapan, San Simén de Guerrero, Santo Tomas,
Temascaltepec, Valle de Bravo, Villa de Allende, Villa Victoria,
and Zinacantepec (Figure 2).

Field confirmation of the presence of the Neotropical
otter. In 2024 and 2025, field interviews and field trip were
conducted at nine sites to verify the potential distribution
model for Lontra annectens in the State of Mexico. During
fieldwork, the Telpintla, El Vado, Chilero, Temascaltepec,
and Grande rivers were sampled by walking along their
banks in search of direct and indirect evidence of the
species, including sightings, footprints, spraints, and
latrines (Figure 3). In other sites, we verified the existence of
rivers that showed channel transfer, such as Arroyo Grande,
Malacatepec River, and Ixtapan del Oro-Santo Tomas de los
Platanos River, all within the Cutzamala Plan (Figure 3).

We confirmed the presence of the Neotropical otter
in the State of Mexico, particularly in the municipality
of Temascaltepec (Table 1). We found that the species is
preferentially associated with river stretches that maintain
good water quality, riparian vegetation coverage, and
food availability, even in areas where fish farming is
practiced (Table 2).

Table 2. Characteristics of sampled rivers in the Temascaltepec region with evidence
of the presence of Lontra annectens.

River Sampling Amount Site River River
effort and type of characteristics depth width
(km) records (m) (m)
Chilero 6 12 spraints  Clear water 0.2-1.1 3-4
(scats)and  Big rocks
one feeder  Presence of pools
Rugged river
channels
Telpintla 3 7 spraints Narrow and rocky 0.3 2
Small rocks
Turbid water
Scarce pools
Vado 3 10 spraints  Clear water 0.2-0.4 4
Big rocks
Presence of pools
Rugged river
channels
Grande 7 7 spraints Clear water 0.3-0.7 5-10
Presence of pools
Big rocks
Rugged river
channels
Temas- 2 7 spraints Sewage odor 03 4
caltepec* and one Scarce pools

feeder

Turbid water
Scarce water flow
Presence of
garbage
Abundant small
rocks

The evaluated sites have favorable conditions for
maintaining local subpopulations, including clear water,
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riverbank vegetation, rocky substrates that form pools and
waterfalls that provide shelter and facilitate movement,
and abundant aquatic prey, such as trout (Oncorhynchus
mykiss), which can sustain local subpopulations. Together,
these conditions constitute highly favorable habitats for
the establishment and persistence of L. annectens in the
area (Table 2).

During field trips, we obtained records from previously
explored areas in which no evidence of Neotropical otter
presence had been found, such as the Vado River (Simén-
Martinez 2003). Based on indirect evidence, including
interviews, spraints, and feeders, we confirmed the presence
of the species in the municipalities of Santo Tomas de los
Platanos, Ixtapan de la Sal, Tonatico, and Temascaltepec,
and possible presence in Malinalco and its surroundings.
Similarly, we found no evidence of its presence in the area
comprising Villa Victoria, Villa de Allende, Donato Guerra,
and Ixtapan del Oro (humbers 1, 2, 3, 4; Figure 3).

Discussion

The modeling identified areas that are highly suitable for
the presence of the Neotropical otter (Lontra anectens) in
the State of Mexico and surrounding regions. In addition,
field sampling confirmed its presence in places where it
had not been previously recorded, such as the Vado River
in Temascaltepec or the Platanar region in Malinalco,
in addition to areas with historical records such as
Malinaltenango, confirming its permanence over time
(Simoén-Martinez 2003; Monroy-Vilchis and Mundo 2009;
Guererro Flores et al. 2013).

Our results clarify the distribution of the Neotropical
otter (Lontra annectens) in central Mexico, which had been
underestimated by the IUCN (Rheingantz et al. 2021).
The persistence of the species in this region has been
questioned due to anthropogenic impact on its habitat
(Gallo-Reynoso 1997, Moreno Barrera et al. 2025). This has
led to the omission of documented records in entities such
as the State of Mexico and other areas where multiple
recent sightings and suitable habitats have been confirmed
(Sierra-Huelz and Vargas-Contreras 2002).

Although progress has been made in understanding
the distribution of Lontra annectens in Mexico, the studies
conducted to date are scarce and geographically limited.
These studies have focused on specific regions, such as the
Apatlaco-Tembembe basin, in the state of Morelos (Cirelli
Villanova 2005), the Yucatan Peninsula (Ortega-Padilla et al.
2022), the Huicicila River hydrological basin, in Nayarit (Luna
Aranguré 2015), and the state of Michoacan (Monterrubio-
Rico and Charre-Medellin 2014). In these studies, the
presence of otters has been associated with variables such
as altitude, vegetation type, and hydrological characteristics.
The results indicate that the Neotropical otter is present
mainly in perennial rivers with habitat continuity and that the
protected areas that host the species have limited coverage.

The limited geographic coverage and the lack of
comprehensive studies at the regional and national scales




make it difficult to fully understand the distribution and
ecology of the species (Gallo-Reynoso 1989; 1997; Gallo-
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Vado River, where no previous evidence had been found
(Guerrero-Flores et al. 2013). Furthermore, we confirmed

Reynoso and Meiners 2018). Furthermore, fragmentation
of aquatic habitats, urbanization, and topography may
be leading to basin-differentiated population structure
(Guerrero-Flores 2014, Hernandez-Romero et al. 2018;
Latorre-Cardenas et al. 2021), suggesting that populations
in the State of Mexico may be locally genetically isolated
(Rivera-Ortiz et al. 2014).

Thecombinationofenvironmentalvariables,geographical
barriers, and hydrography promotes population divergence
in L. annectens, with important genetic and morphological
implications (Herndndez-Romero et al. 2017). Alterations to
the natural landscape, such as dam construction and the loss
of riparian vegetation, disrupt the dispersal of Neotropical
otter populations, reducing genetic connectivity between
them (Latorre-Cardenas et al. 2021). Therefore, otters
inhabiting the center of the country may be genetically
closer to central populations of Oaxaca, Guerrero, Jalisco, or
Veracruz than to populations from the northern Pacific or the
Atlantic slope (Guerrero et al. 2015).

The absence or scarce presence of otters in the area
of the northern State of Mexico adjacent to the state of
Hidalgo, as suggested by the potential distribution model, is
explained by the lack of suitable perennial aquatic habitats,
unfavorable altitude and climate, and environmental
degradation of riverbanks essential for Neotropical otter
survival (Botero-Botero et al. 2017). Although otters have
been recorded in mountainous areas of Mexico and
Colombia at altitudes of up to 2000 and 3000 m a.s.l., these
populations are very localized and sparse (Andrade-Ponce
and Angarita-Sierra 2017; Esparza-Carlos et al. 2022). Otters
require perennial rivers with high dissolved oxygen levels
and adequate prey availability (Casariego Madorell et al.
2006). On the other hand, mountainous areas of the eastern
State of Mexico have cold ecosystems and high altitudes
(2500-3000 m a.s.l), with intermittent or very small
waterways that lack dense riparian vegetation required by
otters for shelter and food (Lavariega et al. 2020).

In the northern State of Mexico, hydrological systems
are characterized by low flows and fragmented waterways,
which preclude the establishment of stable Neotropical
otter populations (CAEM 2025). In addition, river piping
and the Cutzamala plan have eliminated channels through
which otters could move (CAEM 2025). Anthropogenic
effects such as urbanization, agriculture, and pollution
have degraded riverbanks in mountainous volcanic areas,
thereby preventing otters from establishing burrows and
reducing food availability (Gallo-Reynoso 1997).

The Temascaltepec region, in which the greatest
evidence of the presence of otters in the State of Mexico
has been reported, still shows adequate riparian vegetation
and rivers with permanent water flows that sustain local
Neotropical otter populations (Arellano Nicolas et al. 2012).
We documented the presence of the Neotropical otter at a
new location in the area and confirmed that it occurs in the

previous records of the species in the Telpintla, Grande, and
Chilero rivers (Simén-Martinez 2003; Monroy-Vilchis and
Mundo 2009; Guerrero-Flores et al. 2013) 19 years after the
last evidence was reported.

The Neotropical otter populations in Temascaltepec live
in highly modified environments where their diet consists
mainly of trout (Oncorhynchus mykiss; Monroy-Vilchis and
Mundo 2009), a species introduced to central Mexico, in
contrast to less disturbed populations elsewhere in the
country. The Amacuzac River, which runs through the
state of Morelos, partly derived from the Lerma River and
flowing into the Balsas River through its tributary through
the Chontalcoatlan River that crosses the Cacahuamilpa
Caves, is an important system of basins that could have
historically facilitated the mobility of otters; however, they
are currently fragmented by dams and human alterations
(Arellano Nicolas et al. 2012; Gonzélez-Christen et al. 2013;
Guerrero-Flores et al. 2013; Lavariega et al. 2020).

The potential distribution model identified adequate
habitats in localities near Temascaltepec, including
Canadas de Nanchititla, within the Sierra de Nanchititla
State Park in the southwestern area of the State of Mexico.
This regionis covered by natural vegetation and crossed by
major waterways suitable for otter populations (CEPANAF
2023). Although these areas have been identified as
potentially adequate for the species, field validation is
necessary. However, access is limited by the insecure
conditions associated with organized crime, a significant
obstacle to fieldwork.

The otter population living in the Temascaltepec region
may move to, or be linked to, populations in the southern
parts of the state, adjacent to Tingambato, Michoacén, due
to the flow of waterways, although there are no records
of otters in Tingambato (Monterrubio-Rico and Charre-
Medellin 2014). Therefore, it is essential to continue the
search for L. annectens in all rivers and streams that connect
with the Temascaltepec River and other main rivers, such
as Tilostoc, to determine the mobility or migration of otters
across the sub-basin.

The distribution of the Neotropical otter in the State of
Mexico and central Mexico is poorly known. Although its
presence is mentioned in the list of fauna of the “Valle de
Bravo, Malacatepec, Tilostoc and Temascaltepec River Basins”
Natural Resources Protection Area, there are no management
plansorconservation strategiesforthe species. In this context,
the present study is a valuable contribution to planning
the monitoring and conservation of the Neotropical otter
in central Mexico, by identifying areas with high ecological
suitability that can host undocumented populations.

The results of the present study set the basis for defining
priority areas for conservation and shelter determined by
the potential distribution model. Monitoring programs must
consider environmental variables that affect the presence
of the species, such as the pollution of water bodies and the
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conservation status of riparian vegetation (Botero-Botero
et al. 2016; Lavariega et al. 2020). Therefore, management
and monitoring strategies aimed at protecting L. annectens
must adopt a comprehensive approach that integrates
spatial analysis with detailed ecological and environmental
assessments to ensure the effectiveness of long-term
conservation actions. Finally, the lack of genetic studies
on otters inhabiting the State of Mexico makes it difficult
to evaluate connectivity between otter populations, a key
factor in understanding the dynamics and viability of the
species in this entity.
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Well resolved phylogenetic relationships are fundamental to understanding species’ evolutionary history, but inferring robust phylogenies
can be challenging. The mitochondrial genome has resulted a valuable resource to achieve higher phylogenetic resolution and support. The
Commissarisis's long-tongued bat (Glossophaga commissarisi) is a widely distributed nectar-feeding bat in the Americas, ranging from Mexico
to Colombia and Peru. In this study, we sequenced and assembled the complete mitochondrial genome of the species to characterize its
genomic structure, codon usage, and patterns of selection; and to determine its phylogenetic position within Phyllostomidae. We confirmed
its phylogenetic position within the genus Glossophaga and the family Phyllostomidae. The mitogenome was a circular molecule with a total
length of 16,648 bp, containing 13 protein-coding genes (PCGs), two ribosomal genes, 22 transfer RNA genes, and one D-loop or control region
(CR). The overall nucleotide composition was A = 32.18%, T = 29.63%, C = 23.97%, and G = 14.22%, with A + T content = 61.81% and G + C
content of 38.19%. The phylogenetic tree reconstructed using the 13 PCGs included 61 taxa and recovered G. commissarisi as a sister species
of G. leachii and a fully-supported clade (bv = 100) containing the genus Glossophaga. Our study provides a crucial genomic resource for the
study of these bats and demonstrates the utility of complete mitogenomes in achieving well-resolved phylogenies for rapidly diversifying
mammalian groups.

Keywords: Chiroptera, genomic resources, mitochondrial evolution, molecular phylogenetics, New World bats, selective constraints

Las relaciones filogenéticas bien resueltas son fundamentales para comprender la historia evolutiva de las especies; sin embargo, es un reto
obtener filogenias concluyentes. El genoma mitocondrial ha resultado ser un recurso valioso para obtener mayor resolucién en las relaciones
filogenéticas. El murciélago lengiietén de Commissarisi (Glossophaga commissarisi) es un murciélago nectarivoro ampliamente distribuido
en las Américas, con un rango de distribucion que va desde México hasta Colombia y Peru. En este estudio, secuenciamos y ensamblamos
el genoma mitocondrial completo (mitogenoma) de la especie para caracterizar su estructura genémica, uso de codones y patrones de
seleccion; y para determinar su posicidn filogenética dentro de la familia Phyllostomidae. Confirmamos su posicién filogenética dentro del
género Glossophaga y la familia Phyllostomidae. El mitogenoma fue una molécula circular con una longitud total de 16,648 pb, que contenia
13 genes codificantes de proteinas (PCG), dos genes ribosomales, 22 genes de ARN de transferencia y una regién D-loop o regién control (CR).
La composicion nucleotidica general fue A =32.18%, T = 29.63%, C = 23.97% y G = 14.22%, con un contenido A + T =61.81% y un contenido
G + C de 38.19%. El arbol filogenético reconstruido utilizando los 13 PCG incluyo6 61 taxones y recuperd a G. commissarisi como una especie
hermana de G. leachiiy un clado con soporte completo (bv = 100) que contenia al género Glossophaga. Nuestro estudio proporciona un recurso
genomico crucial para el estudio de estos murciélagos y demuestra la utilidad de los mitogenomas completos para obtener filogenias bien
resueltas en grupos de mamiferos que se diversifican rdpidamente.

Palabras clave: Chiroptera, evolucién mitocondrial, filogenética molecular, murciélagos del Nuevo Mundo, recursos genémicos, restricciones
selectivas
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Phylogenetic relationships are fundamental to ofgenomic-scale datahasemerged asapowerfulapproach

understanding evolutionary history, biogeography, and
the evolution of ecological traits. However, inferring robust
phylogenies can be challenging, often yielding incongruent
results between studies that use different datasets (e.g.,
morphological vs. molecular data) or limited molecular
markers (Davalos et al. 2012; Dumont et al. 2012). Such
phylogenetic incongruence can stem from factors like
convergent evolution, incomplete lineage sorting, or the
limited phylogenetic signal of individual genes (Rokas and
Carroll 2005; Degnan and Rosenberg 2009). The integration

to resolve these conflicts, providing a more comprehensive
and statistically robust view of evolutionary relationships
by aggregating signals from thousands of independent
loci (McCormack et al. 2013; Reddy et al. 2017).

Among genomic resources, the complete mitochondrial
genome (mitogenome) offers a particularly valuable tool
for phylogenetic inference at intermediate taxonomic
levels (Gissi et al. 2008). Mitogenomes provide a set of 37
linked genes that evolve at different rates, combining fast-
evolving regions useful for recent divergences with highly
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THE MITOCHONDRIAL GENOME AND PHYLOGENETIC POSITION OF GLOSSOPHAGA COMMISSARISI

conserved protein-coding genes informative for deeper
nodes (Boore 1999). This, coupled with features like rare
gene rearrangements, codon usage bias, and patterns of
evolutionary selection, makes mitogenomic data superior
to single mitochondrial genes for achieving higher
phylogenetic resolution and support, especially within
rapidly diversifying clades (Cameron 2014; Tan et al. 2015).

The New World leaf-nosed bats (family Phyllostomidae)
represent a classic example of an adaptive radiation,
exhibiting extraordinary ecological diversity - from
insectivory and carnivory to frugivory, nectarivory, and
even sanguivory — within a relatively recent evolutionary
timeframe (Dumont et al. 2012; Rojas et al. 2016). This
rapid diversification has sometimes resulted in unresolved
or conflicting phylogenetic hypotheses, particularly
within subfamilies (Baker et al. 2012; Davalos et al. 2014).
The subfamily Glossophaginae (nectar-feeding bats) is
a key component of this radiation. Within it, the genus
Glossophaga is widespread and species-rich, yet the
phylogenetic relationships among its species remain
partially unresolved due to limited genomic data
(Hoffmann et al. 2019). The Commissaris’s long-tongued
bat, Glossophaga commissarisi (Gardner 1962), is a widely
distributed nectar-feeding bat found from Mexico to Peru,
also acting as a facultative insectivore (Sdnchez-Casas
and Alvarez 2000). Despite its abundance, no complete
mitogenome was available for this species, creating a gap
in resources needed for phylogenetic analyses of the genus.

To address this gap, we sequenced, assembled, and
annotated the first complete mitochondrial genome
of G. commissarisi with the following objectives: (1) to
characterize its genomic structure, codon usage, and
patterns of selection; and (2) to determine its phylogenetic
position within Phyllostomidae using a phylomitogenomic
approach. We predicted that the mitogenome of G.
commissarisi would exhibit structural conservation
and strong purifying selection typical of functional
mitochondrial genomes. Furthermore, we predicted that
the use of complete mitogenomic data would provide
high statistical support for resolving its position as
sister to G. leachii and for clarifying relationships within
Glossophaginae, offering a superior resource compared to
single-gene studies.

Materials and methods

Mitogenome sequencing and assembly. Muscle tissue froman
adult male of G. commissarisi (Figure 1) was collected in the
Ejido Loma Bonita, shore of the Lacantun River, municipality
Ocosingo, Chiapas, Mexico (Latitude 16.1014583° N,
Longitude -91.00196° W), in March 2017 and preserved as
a standard museum voucher specimen (skin and skeleton)
following established practices (Sikes et al. 2011). The tissue
was stored at the Mammal tissue collection of El Colegio
de la Frontera Sur (ECO-SC-M 8490). Genomic DNA was
extracted using a modified phenol-chloroform protocol
(Sambrook and Russell 2001). DNA quality was assessed
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with a Nanodrop 2000 and a quantified Qubit 4 fluorometer.
A pair-end (PE, 150 bp) shotgun library was constructed
and sequenced on an Illumina NovaSeq 6000 platform at
Novogene (Sacramento, CA). 68,005,078 reads in FASTQ
format were generated and utilized for de novo assembly of
the mitochondrial genome (lllumina 2020).

To characterize the genomic structure and codon usage
of the mitochondrial genome of G.commissarisi we obtained
a de novo assembly with GetOrganelle v1.7.7.0 with k-mer
sizes of 21, 45, 65, 85, and 105, using the mitochondrial
genome (seed file) of congeneric Glossophaga mutica
(Genebank: OR263465.1) (Jin et al. 2020). To guarantee a
high-quality genome, we analyzed the depth of coverage.
The annotation of the complete mitochondrial genome was
performed using the web server MITOS2 hosted in Galaxy
with the vertebrate code (usegalaxy.org; Donath et al. 2019).
Nucleotide composition and skew curves of the complete
mitogenome and the control region were estimated using
a custom R script (R_Core Team 2022). We visualized the
circular genome using Proksee (Grant et al. 2023). Using the
Codon Usage web server (vertebrate mitochondrial code),
we analyzed PCG codon usage, then calculated amino acid
frequencies and RSCU with Ezcodon on the Ezmito web
server (http://ezmito.unisi.it/ezcodon; Cucini et al. 2021).
Mitochondrial tRNA secondary structures, predicted by
MiTFi, were visualized using FORNA (Jiihling et al. 2012;
Kerpedjiev et al. 2015).

To characterize the patterns of selection in each
mitochondrial PCG, we estimated the nonsynonymous
(Ka) and synonymous (Ks) substitution rates for each
mitochondrial PCG using KaKs_Calculator v2.0.1 to assess
selective constraints. The resulting Ka/Ks ratio (w) for each
gene, calculated from pairwise comparisons with G. leachii
and G. mutica, indicated neutral evolution (w = 1), purifying
selection (w < 1), or positive selection (w > 1). Calculations
employed the Y-MYN model to account for variable
mutation rates across sequences (Wang et al. 2020).

The control region was examined for microsatellites
using the Microsatellite Repeats Finder (Bikandi et al.
2004) and for tandem repeats using Tandem Repeats
Finder (Benson 1999). The secondary structure of
this region was subsequently predicted with FORNA
(Kerpedijiev et al. 2015).

Phylomitogenomics of Glossophaga commissarisi and
family Phyllostomidae. To determine the phylogenetic
position of G. commissarisi within Phyllostomidae, we
used a dataset comprising 55 complete mitochondrial
genomes. The ingroup consisted of 51 mitogenomes
representing 46 species from the family Phyllostomidae,
including our newly sequenced G. commissarisi. For
the outgroup, we selected four representative species
from families closely related to Phyllostomidae, based
on recent molecular phylogenies: Mystacina tuberculata
Mystacinidae), Myotis nigricans (Vespertilionidae), Noctilio
leporinus (Noctilionidae), and Pteronotus rubiginosus
(Mormoopidae) (Shi and Rabosky 2015).
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Figure 1. Image of Glossophaga commissarisi and its sampling location within the distribution of the species. Collection voucher is denoted in the coordinate label (ECO-SC-M 8490).

Photo by Juan Cruzado, used with permission.

A maximum-likelihood (ML) phylogeny was recons-
tructed using the MitoPhAST v3.0 pipeline (Tan et al.
2015). This tool automatically extracted and generated a
concatenated and partitioned amino acid alignment from
the 13 protein-coding genes (PCGs) across all taxa. This final
alignment was then used to build the ML tree with IQ-TREE
(Nguyen etal. 2015), which automatically selected the best-
fit model of protein evolution. The topological robustness
of the inferred tree was evaluated with 1,000 bootstrap
replicates (Felsenstein 1985).

Results
The mitochondrial genome of Glossophaga commissarisi
The mitogenome (Genbank: PX387959) of Commissaris’s
long-tongued bat Glossophaga commissarisi is 16,648 bp in
length (average coverage of 1,684 x) and encodes 37 genes,
13 PCGs, 22 tRNA genes, and two rRNA (rrnS and rrnlL) genes,
and a 1,202 bp long non-coding region (Table 1; Figure 2;
Supplementary Figure 1). Most of the PCGs and tRNAs are
encoded on the heavy (H) strand, while the NAD6 gene and
eight tRNAs (trnaQ, trnaA, trnaN, trnaC, trnay, trnaS2, trnak,
and trnaP) are encoded in the light strand (L) (Table 1).

The Control Region in Glossophaga commissarisi
spans 1,202 bp in length with an A + T content of 59.65%.
Microsatellites Repeat Finder analysis identified eight

repeats in the CRincluding five di-nucleotide motifs (AT, TA,
CT, CC) and one tri-nucleotide motif (CCA) (Supplementary
Table 4). Likewise, Tandem Repeat analysis found a
tandem repeat region in the CR spanning positions 776-
898 in approximately 10 copies. The motif sequence is
CGTATACGCCTA, with base composition A=24,C=33,G=
17, T =25 (Supplementary Table 5).

All tRNA genes exhibit anticodon, acceptors, DHU,
and TYC stems (Supplementary Figure 5) and display a
cloverleaf secondary structure, except for tRNA-Serine 1,
which usually lacks the DHU arm.

The studied rrS (12s) and rrnL (16s) genes in G.
commissarisi's mitochondrial genome are 971 bp long and
1,573 bp long respectively (see Table 1 of main text). The rrnS
gene is positioned between trnaF and trnaV genes, while
rrnL is located between trnaV and trnal2 genes. These genes
exhibit an AT composition of 59.94% (12S) and 60.20% (16S).

The nucleotide composition of the positive DNA strand
of the mitochondrial genome was as follows: A = 32.18%,
T = 29.63%, C = 23.97%, and G = 14.22%, resulting in
an overall A + T content of 61.81% and G + C content of
38.19%. The AT skew we observed in the mitogenome is
0.041 (Supplementary Table 1).

The amino acids in each of Glossophaga commissarisi's
PCGs are encoded by at least two different codons
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Table 1. Characteristics of the mitochondrial genome of Glossophaga commissarisi. Continuity refers to the number of overlapping nucleotides between consecutive features: positive
values indicate gene overlap, negative values indicate intergenic gaps, and zero indicates adjacent features. Stop codons that are shown with parentheses denote incomplete stop codons.

Feature Type Start End Strand Length (bp) Start codon Stop codon Anticodon Continuity
Phe tRNA 1 68 + 68 GAA 0
12S rRNA rRNA 69 1039 + 971 0
Val tRNA 1040 1107 + 68 TAC 0
16S rRNA rRNA 1108 2680 + 1573 0
Leu tRNA 2682 2756 + 75 TAA 1
NAD1 PCG 2759 3715 + 957 ATG TAA 2
lle tRNA 3715 3783 + 69 GAT -1
Gln tRNA 3781 3853 - 73 TTG -3
Met tRNA 3853 3921 + 69 CAT -1
NAD2 PCG 3922 4965 + 1044 ATT TAG 0
Trp tRNA 4966 5033 + 68 TCA 0
Ala tRNA 5038 5106 - 69 TGC 4
Asn tRNA 5108 5180 - 73 GTT 1
oL 5183 5213 - 31 2
Cys tRNA 5213 5278 - 66 GCA -1
Tyr tRNA 5279 5344 - 66 GTA 0
COX1 PCG 5346 6890 + 1545 ATG TAA 1
Ser tRNA 6888 6958 - 71 TGA -3
Asp tRNA 6962 7028 + 67 GTC 3
COX2 PCG 7029 7712 + 684 ATG TAA 0
Lys tRNA 7716 7784 + 69 TTT 3
ATP8 PCG 7786 7989 + 204 ATG TAA 1
ATP6 PCG 7947 8627 + 681 ATG TAA -43
COX3 PCG 8627 9410 + 784 ATG T(AA) -1
Gly tRNA 9411 9480 + 70 TCC 0
NAD3 PCG 9481 9828 + 348 ATT TAA 0
Arg tRNA 9829 9896 + 68 TCG 0
NADA4L PCG 9897 10193 + 297 ATG TAA 0
NAD4 PCG 10187 11564 + 1378 ATG T(AA) -7
His tRNA 11565 11632 + 68 GTG 0
Ser tRNA 11633 11691 + 59 GCT 0
Leu tRNA 11693 11762 + 70 TAG 1
NAD5 PCG 11763 13592 + 1830 ATA TAA 0
NAD6 PCG 13567 14094 - 528 ATG TAA -26
Glu tRNA 14096 14164 - 69 TTC 1
CYTB PCG 14174 15313 + 1140 ATG AGA 9
Thr tRNA 15314 15380 + 67 TGT 0
Pro tRNA 15380 15446 - 67 TGG -1
OH 15746 16019 + 274 299
CR D-loop 15447 16648 1202

(Supplementary Table 2), with a preference for codons
ending in adenine or thymine, while codons ending in
guanine are less frequently used. Relative synonymous
codon usage (RSCU) and amino acid frequency are
summarized (Supplementary Figure 2). The most frequently
used codons include ATA (lle), TTT (Phe), and AAA (Lys),
whereas CGG (Arg) and GCG (Ala) are among the least
frequently used codons.

Analysis of Ka/Ks ratios for all mitochondrial PCGs
(Supplementary Figure 3; Supplementary Table 3) revealed
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values below 1 (P < 0.001). CYTB, COX1, COX2, and NAD4L
exhibited the lowest Ka/Ks ratios, whereas ATP8, NAD1, and
NAD6 showed relatively higher values. The average Ka/Ks
across all 13 PCGs ranged from 0.016 to 0.529, depending
on the gene and comparison.

Phylomitogenomics of Glossophaga commissarisi.
The ML phylogenetic analysis recovered the expected
relationships  within  Phyllostomidae  with  high
bootstrap support (Figure 3). Within the nectarivorous
Glossophaginae, Glossophaga sequences clustered
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Figure 2. Circular representation of the mitochondrial genome of Glossophaga commissarisi. Colors indicate the composition and arrangement of genes. The origins of replication of

the light strand (OL) and heavy strand (OH) are annotated in the figure.

together (bv = 100), with G. soricina sister to the G.
mutica clade, and G. leachii and G. commissarisi forming
a strongly supported subclade (bv = 99.3). Leptonycteris
species were sister to Glossophaginae (bv = 99.9). Other
subfamilies, including Phyllostominae, Stenodermatinae,
and Lonchorhininae, were recovered with variable
support among nodes (bv = 99.6-100).

Discussion

The mitochondrial genome of Glossophaga commissarisi.
The gene arrangement in the Glossophaga commissarisi
mitochondrial genome is similar to those previously
reported for phyllostomids and species of the subfamily
Glossophaginae (Vivas-Toro et al. 2021; Baeza et al. 2022;

mentary Figure 4) (Rocamontes-Morales et al. 2025).
The length and structural features of the tRNA genes
resemble those observed in congeneric Glossophaga, other
phyllostomids and beyond (Meganathan et al. 2012; Vivas-
Toro etal.2021; Baeza et al. 2022; Barrera et al. 2023; Vargas-
Trejo et al. 2023; Rocamontes-Morales et al. 2025).

The overall nucleotide composition is consistent with
therange observed in congeneric Glossophaga species, and
other Phyllostomids (Vivas-Toro etal. 2021; Baeza et al. 2022;
Barrera et al. 2023; Vargas-Trejo et al. 2023; Rocamontes-
Morales et al. 2025). Likewise, the observed codon usage
patterns have been observed in other congeneric species
and other Phyllostomid bats (Vivas-Toro et al. 2021; Baeza
et al. 2022; Barrera et al. 2023; Vargas-Trejo et al. 2023;

Barrera et al. 2023; Vargas-Trejo et al. 2023; Rocamontes-
Morales et al. 2025). The Control Region is moderately
shorter than congeneric species in Glossophaga (Supple-

Rocamontes-Morales et al. 2025).
Analysis of evolutionary pressures shows that the
mitogenome of Glossophaga commissarissi has evolved
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Figure 3. Maximum-likelihood phylogeny of the Phyllostomidae based on mitochondrial genomes. The newly assembled Glossophaga commissarisi genome from this study is
highlighted with an arrow. Accession numbers are provided in parentheses for all species. Node support is indicated by bootstrap values (shown above/below branches). Species from the
Mystacinidae, Vespertilionidae, Noctilionidae, and Mormoopidae families were used as an outgroup.
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under strong purifying selection, as evidenced by Ka/Ks
ratios below 1 for all 13 protein-coding genes. This finding
is consistent with patterns documented across other
phyllostomid bats, supporting the conserved functional
role of these mitochondrial genes (Vivas-Toro et al. 2021;
Baeza et al. 2022; Barrera et al. 2023; Camacho et al. 2022;
Vargas-Trejo et al. 2023; Rocamontes-Morales et al. 2025).

Phylomitogenomics of Glossophaga commissarisi. Our
phylogenetic results are largely congruent with previous
studies based on concatenated mitochondrial genes (e.
g., CYTB, ND2) and multi-locus nuclear datasets, which
consistently recover Glossophaga as a monophyletic
group and place G. commissarisi as sister to G. leachii
(Hoffmann et al. 2019; Rocamontes-Morales et al. 2025).
However, the use of complete mitogenomes in this study
provided substantially higher nodal support across the
phylogeny, particularly for deeper relationships within
Phyllostomidae. For example, the clade containing G.
commissarisi and G. leachii received a bootstrap value of
99.3, and monophyly of Glossophaginae was recovered
with full support (bv=100). This contrasts with some
earlier studies using fewer mitochondrial markers, where
support for these same models was moderate or variable
(e.g., Hoffmann et al. 2019). The increased signal provided
by the concatenated alignment of all 13 protein-coding
genes likely contributed to this improved resolution,
underscoring the utility of phylomitogenomic approaches
in resolving relationships within rapidly diversifying
groups like the phyllostomid bats.

Conclusions

In this study, we assembled and annotated the complete
mitochondrial genome of G. commissarisi. A phylogenetic
tree was reconstructed based on all translated PCGs
and supports G. commissarisi as sister to G. leachii, also
forming a well-supported clade with Glossophaga and
subfamily Glossophaginae. These findings provide
genetic resources for future studies on the complex and
seldom-studied Glossophaga genus. We recommend
that future research sequence remaining congeners to
resolve the comprehensive phylogenetic relationships
within the entire genus.
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Exploring species boundaries of the spotted ground
squirrel (Xerospermophilus spilosoma) complex
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Xerospermophilus spilosoma exhibits notable geographic and morphological variation, prompting a debate over its taxonomic status.
Currently, it is unclear whether it represents a single highly variable species or a complex of cryptic species that includes X. perotensis. Although
the latter has a larger body size and a distinctive dorsal pattern, current genetic analyses do not supportits recognition as a separate species. This
study aimed to delimit potential evolutionary units within the X. spilosoma complex. Twenty-four sequences of the mitochondrial cytochrome
b gene were analyzed using 690-bp fragments from X. spilosoma and X. perotensis specimens collected from eight locations. Phylogenetic
and divergence time inferences were estimated using Maximum Likelihood and Bayesian Inference, along with analyses of genetic distances
and haplotype networks. Three species delimitation methods (ABGD, PTP, and GMYC) were applied, and the ecological uniqueness and areas
of overlap within and between species of the X. spilosoma complex were assessed. Four lineages comprising 22 unique haplotypes were
identified, with interpopulation genetic distances ranging from 3 % to 6 %. Species delimitation methods suggested between one and four
potential species. Meanwhile, the comparison of ecological niches revealed limited overlap. Genetic and environmental evidence indicate that
X. spilosoma comprises at least three evolutionarily independent lineages. The complex originated in the Miocene, more than 5 million years
ago, with divergence events concentrated between 3.5 and 1.5 million years ago, in accordance with geographical barriers such as Rio Grande
and the Nazas River and the Trans-Mexican Volcanic Belt. These results highlight the need to conserve these populations as independent
evolutionary units, particularly the Perote population, given its isolation and ecological and genetic uniqueness.

Keywords: Chihuahuan Desert; cytochrome b; Rio Grande; Taxonomy.

Xerospermophilus spilosoma presenta una notable variacion geografica y morfolégica, lo que ha generado debate sobre su estatus
taxonémico. Actualmente se discute si representa una Unica especie o un complejo de especies cripticas que incluiria a X. perotensis. Aunque
esta Ultima presenta mayor tamafo corporal y un patrén dorsal distintivo, los andlisis genéticos actuales no respaldan su reconocimiento
como especie vélida. El objetivo de este trabajo fue delimitar las posibles unidades evolutivas dentro del complejo X. spilosoma. Se analizaron
24 secuencias del gen mitocondrial citocromo b, usando fragmentos de 690 pb de X. spilosoma 'y X. perotensis, de ocho localidades distintas.
Las inferencias filogenéticas y de tiempo de divergencia se estimaron mediante Maxima Verosimilitud e Inferencia Bayesiana, junto con como
analisis de distancias genéticas y redes de haplotipos. Se aplicaron tres métodos de delimitacién de especies (ABGD, PTP y GMYC), ademas de
evaluarse el nicho ecolégico por especie y sobreposicionamiento entre especies del complejo X. spilosoma. Se identificaron cuatro linajes con
22 haplotipos Unicos con distancias genéticas interpoblacionales entre el 3 y el 6%. Los métodos de delimitacién de especies sugieren entre
unay cuatro especies potenciales. Por su parte, la comparacién de los nichos ecolégicos mostré un bajo solapamiento de areas. La evidencia
genética y ambiental obtenida sugiere que X. spilosoma corresponde a un complejo de al menos tres linajes evolutivamente independientes.
El complejo se originé en el Mioceno, hace mas de 5 Ma, con eventos de divergencia concentrados entre 3.5y 1.5 Ma, en concordancia con
barreras geogréficas como los rios Grande y Nazas y la Faja Volcanica Transmexicana. Estos resultados, resaltan la necesidad de conservar estas
poblaciones como unidades evolutivas independientes, especialmente la de Perote, por su aislamiento y singularidad ecolégica y genética.

Palabras clave: Citocromo b; Desierto Chihuahuense; Rio Grande; Taxonomia.
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Establishing the boundaries between species is a difficult
task, especially in taxa for which speciation processes have
not resulted in an evident morphological differentiation
(Goldstein and De Salle 2011; Fiser et al. 2018). This can be
explained by phenomena such as convergence (Losos 2008,
2011), stabilizing selection (Gould 2002; Hansen and Houle
2004), or a recent speciation process (Gittenberger 1991;

Rundell and Price 2009). A major problem in taxonomy

is that species boundaries vary widely depending on the
species concept employed (De Queiroz 2007). Therefore, a
unified concept based on theirevolutionary origin has been
proposed, defining them as evolutionarily independent
lineages. These lineages are identified by evaluating
secondary characteristics, e.g., ecological, morphological,



http://www.mastozoologiamexicana.org
mailto:pcolunga%40uv.mx?subject=
mailto:alcastro%40uv.mx?subject=
mailto:sergio.albino%40inecol.mx?subject=
mailto:alberto.gonzalez%40inecol.mx?subject=
mailto:juan.uriosteguive%40docentes.uaem.edu.mx?subject=
mailto:yessica.rico%40inecol.mx?subject=
mailto:jgalindo%40uv.mx?subject=
https://orcid.org/0000-0002-0468-8928
https://orcid.org/0000-0002-1355-0939
https:// orcid.org/0000-0002-8171-9193
http://orcid.org/0000-0002-7451-8895
https://orcid.org/0000-0003-2583-2754
https:// orcid.org/0000-0001-5800-1223
https://orcid.org/0000-0002-4418-5882

SPECIES BOUNDARIES OF THE XEROSPERMOPHILUS SPILOSOMA COMPLEX

and genetic traits, that reflect some degree of evolutionary
independence (Simpson 1961; Wiley 1978; Bock 2004; Hey
2006; De Queiroz 2007).

With more than 2600 species, the order Rodentia is the
most diverse group of mammals worldwide (D’Elia et al.
2019). This diversity is partly due to their high evolutionary
rates and rapid radiation processes, often associated
with evolutionary convergences, which has produced
taxonomic complexities that still require resolution (Triant

different environments, which could indicate processes
of ecological differentiation that support or facilitate the
delimitation of species (Peterson et al. 2000; Kozak and
Wiens 2006; Pahad et al. 2019). Similarly, niche modeling
studies contribute to understanding the relationship
between genetic variation patterns and the environmental
parameters that limit the distribution of a species
(Ashrafzadeh et al. 2018; Calixto-Pérez et al. 2018; Luna-
Aranguré and Vazquez-Dominguez 2020).

and De Woody 2006; Fabre et al. 2012; Burgin et al. 2018).
Within this order, squirrels of the family Sciuridae stand out
for their diversity, with about 300 species distributed in a
wide range of ecosystems, from deserts to tropical forests,
and from sea level to more than 4500 meters above sea
level. This family exhibits great morphological variation,
including arboreal, terrestrial, and gliding forms, with
solitary or social patterns (Koprowski et al. 2016; Rocha
et al. 2016). In addition, their biological characteristics,
such as low dispersal capacity, short life cycles, and varied
reproductive strategies, allow for a detailed analysis of
the differentiation and evolutionary isolation processes,
making squirrels ideal models for genetic and evolutionary
studies (Rocha et al. 2016; Flores-Manzanero and Vazquez-
Dominguez 2019; Waterman et al. 2021).

The current distribution of most squirrel species in North
America is explained by allopatric speciation processes,
where geographic barriers such as mountain systems and
water bodies have limited gene flow (Harrison et al. 2003;
Ge et al. 2014; Zelditch et al. 2015). For example, the Snake
River, in the northwestern United States, has influenced the
diversification of small-eared ground squirrel species of
the genus Urocitellus (McLean et al. 2025). In this context,
several current species have been isolated in valleys due
to geological events that occurred during the Quaternary
period, such as fluctuating glaciations or volcanic activity
(Harrison et al. 2003; Van Tuinen et al. 2008; Menéndez et al.
2021). A peculiar case is that of the Mojave ground squirrel,
Xerospermophilus mohavensis, whose possible origin
involved allopatric speciation in a small isolated refuge
within the Mojave Desert, delimited by the Sierra Nevada
(Bell et al. 2010).

However, geographic isolation does not always imply
sufficient ecological or genetic divergence to justify the
separation into distinct species (Barton 2020; Kulmuni et
al. 2020). An example is the population of Mearns squirrels
(Tamiasciurus mearnsi) in Baja California, for which genetic
studies indicate a relatively recent separation and a limited
ecological differentiation despite being geographically
isolated from Tamiasciurus douglasii,leading to the question
of whether T. mearnsi should really be considered a distinct
species (Arbogast et al. 2001; Pecnerova and Martinova
2012; Hope et al. 2016). Therefore, examining the niches of
species in the environmental space and projecting them
in the geographical space constitutes an additional line of
evidence to evaluate whether populations, in addition to
being physically separated, have occupied and exploited

82  THERYAVol.17(1):81-98

A taxonomic review of the genus Spermophilus based
on morphology and sequences of the cytochrome b (cytb)
mitochondrial gene revealed its paraphyletic condition,
which led to the reassignment of several species to
new genera. Thus, Xerospermophilus was recognized as
a genus that includes X. mohavensis, X. tereticaudus, X.
spilosoma, and X. perotensis (Helgen et al. 2009). However,
the phylogenetic relationship between X. spilosoma and
X. perotensis remains a matter of debate, particularly with
regard to their recognition as separate species (Harrison et
al. 2003; Helgen et al. 2009; Ferndndez 2012).

Xerospermophilus spilosoma is the most divergent
species that is distributed over a wide geographic range,
from Wyoming, South Dakota, and Nebraska to central
Mexico (Lacher et al. 2016; Alvarez-Castafieda 2024).
This wide distribution has favored a high morphological
diversity within the species, including variation in coat
coloration from cinnamon to dark smoky-gray shades,
through various shades of brown. In addition, it has a series
of spots on the back and flanks whose shape and intensity
vary depending on the environment, probably in response
to local ecological conditions (Cothran et al. 1977; Alvarez-
Castafieda 2024). As a result of this morphological variation,
13 nominal subspecies have been described (Helgen et al.
2009; Mammal Diversity Database 2025).

The taxonomic classification of X. spilosomais currently a
subject of debate. Itis not clear whether it is a single species
with high population variability that includes several
subspecies (Helgen et al. 2009; Ferndndez 2012), including
X. perotentsis, or if the possible paraphilia observed between
the subspecies of X. spilosoma and X. perotensis indicates
that it could be a complex of species (Harrison et al. 2003).

Although X. perotensis has a larger body size, differences
in coloration with a distinctive pattern of dorsal spots and
distinct vocalizations, the genetic analyses available to date,
based on nuclear (GHR and IRBP) and mitochondrial (Cytb
and 12S rRNA) genes, suggest that genetic divergence
would not be sufficient to support its recognition as a
separate species (Fernandez 2012). However, it is worth
noting that these conclusions were based on an limited
number of specimens, namely 3 individuals of X. spilosoma
and 4 of X. perotensis. Therefore, the objective of this study
was to evaluate the differentiation of populations within the
X. spilosoma complex and their possible status as species
using four distinct lines of evidence: (1) phylogenetically
delineating the evolutionary units; (2) estimating
genetic distances between populations to quantify their




divergence; (3) applying species delimitation methods that
allow the identification of separate evolutionary lineages;
and (4) comparing the degree of ecological differentiation
between populations.

Materials and methods

Sample collection. A total of 23 tissue samples were
processed, from specimens collected in the field (n = 12)
and from specimens obtained from different national
and international scientific collections (n = 11). The field
collection consisted of ectomization of the third phalanx
from X. perotensis and X. spilosoma specimens captured
in Perote and Mapimi, respectively. Sample collection
followed the recommendations of Romero-Almaraz et al.
(2007) and the guidelines of the Committee on Animal Care
and Use of the American Society of Mammalogists (Sikes et
al. 2016). The corresponding collection permits were issued
by the Board of the Environment and Natural Resources
(SPARN/DGVS/04074/23 and SPARN/DGVS/08359/23). The
tissues were fixed separately in 96% ethanol and stored at
-70 °C until processing.

Genomic DNA (gDNA) was extracted from the
tissues using the DNeasy Blood and Tissue Kit (QIAGEN,
USA) according to the manufacturer’s instructions.
Subsequently, the concentration of the genetic material
was quantified in a Nanodrop spectrophotometer (model
DS-11, Denovix). To perform the amplification of cytb
fragments by Polymerase Chain Reaction (PCR), a new pair
of oligonucleotides was designed in PerlPrimer v1.1.21:
Xeros_Fw (5'YSAYTTACMYGCACCYTCC-3') and Xeros_Rv
(5'GGRTATWCAACRGGTTGYCMTC 3'), which amplifies a
981-bp fragment. This primer pair was evaluated in silico
using SnapGene v.8.1 to verify its specificity, hybridization
efficiency, and absence of secondary structures.

The PCR reactions were run in a final volume of 25 uL
per sample, containing 2 pL of gDNA (with concentrations
between 20 and 200 ng/uL), 14.25 pL of nuclease-free H,
6.25 pL of Master mix DreamTaq (QIAGEN, USA), and 2 pL of
each primerat 10 uM. One positive control and one negative
control were included in each run to ensure procedural
reliability and to rule out contamination. The amplification
protocol consisted of an initial denaturation step at 94 °C
for 5 minutes, followed by 40 denaturation cycles at 94 °C
for 30 seconds, alignment at 56 °C for 30 seconds, extension
at 72 °C for 70 seconds, and a final elongation step at 72 °C
for four minutes. The PCR tests were performed on a BioRad
T100 thermal cycler. PCR products were visualized on 2 %
agarose gels, stained with red gel, and examined under UV
light using a transilluminator. The PCR products were then
purified using the Qiaquick Gel Extraction Kit (QIAGEN,
USA) according to the manufacturer’s instructions. The
purified products were sent for bidirectional sequencing to
Macrogen, South Korea.

In total, 24 Xerospermophilus samples were considered
for subsequent analyses. Of these, 12 were generated in
this study (7 for X. spilosoma and 5 for X. perotensis), and 12
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were recovered from GenBank. The sequences were edited
manually, then aligned using the MUSCLE algorithm, and
visuallyinspected using Geneious Primeand MEGA X (Kumar
et al. 2018). The final alignment included 14 sequences for
X. spilosoma, 10 for X. perotensis (Appendix 1), and one for
Ictidomys mexicanus as an outgroup (Harrison et al. 2003;
Guevara-Chumacero et al. 2006; Fernandez 2012).

Phylogenetic analyses and genetic diversity. From the
global alignment, the best substitution model was selected
through an exhaustive search in JModelTest v2.1.10
(Darriba et al. 2012). Phylogenetic inference was performed
under the Maximum Likelihood (ML) criterion using the
previously selected model (GTR + G), with estimated branch
support across 10 000 ultrafast bootstrap replicates (Hoang
etal. 2018) in IQ-TREE v1.6.12 (Nguyen et al. 2015). Bayesian
Inference (BI) was performed in MrBayes v.3.2.7 (Ronquist
et al. 2012) with the MCMC algorithm and the previously
calculated substitution model (GTR + G + I); to this end,
two separate runs were performed with three hot chains
and one cold chain with 10 million generations and a 25
% burn-in. Chain convergence and good sampling (ESS >
200) were assessed in TRACER v1.7 (Rambaut et al. 2018).
The consensus trees generated in each inference were
visualized and edited using FigTree v1.4.4. (Rambaut 2010).

Subsequently, a haplotype file was generated in DnaSP
V6 (Rozas et al. 2017), from which the number of haplotypes
was identified, and haplotype diversity (Hd) and nucleotide
diversity (Pi) were calculated. With this information, a
haplotype network was constructed using the TCS criterion
in PopArtv1.7 (Leigh et al. 2015). Additionally, an analysis of
intra- and interclade genetic distances was performed using
uncorrected pairwise sequence distances (p-distances)
using the ape library (Paradis et al. 2004). Based on these
data, a heat map was drawn up with the adegenet and split
libraries (Jombart 2008; Ezard et al. 2009), both in R v4.4.1
(R_Core Team 2020). Genetic distances within the genus
Xerospermophilus were evaluated using 15 sequences of X.
tereticaudus and 10 sequences of X. mohavensis (Harrison et
al. 2003; Bell et al. 2010; Ferndndez 2012).

Divergence times. With the alignment constructed as
described above, divergence times were inferred in BEAST
v2.6 (Bouckaert et al. 2019), considering a non-correlated
lognormal relaxed molecular clock and replacing I
mexicanus for Cynomys ludovicianus (Appendix 1) as the
outgroup (Castellanos-Morales et al. 2014). GTR substitution
models with the gamma distribution and the Bayesian
Coalescent Skyline plot model were established.

A secondary calibration based on four nodes was
performed. The first node was calibrated based on the fossil
record of Cynomys rafinesque, with a maximum age of 1.8
Ma (Ge et al. 2019), representing the divergence between
Cynomys and the X. spilosoma complex. The second node
corresponds to the separation between the Kansas, Texas,
and New Mexico populations, in the USA, and those of
Arizona and Mexico, attributed to the formation of the Rio
Grande, whose average consolidation is estimated to have
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occurred 2.6 Ma ago (Morgan and Golombek 1984; Repasch
2017). The third node reflects the divergence between
the populations of Arizona, USA, and Mapimi, Mexico, in
contrast to the populations of the Central Plateau of Mexico,
associated with the Nazas River, whose origin dates back to
the Pliocene and with its current configuration estimated
to have occurred 1.5 Ma ago (Petersen 1976; Hafner and
Riddle 2011). Finally, the fourth node represents the
isolation of the Perote population, in Mexico, attributable
to the culmination of the formation of the Trans-Mexican
Volcanic Belt, completed approximately 1.6 Ma ago (Ferrari
etal. 1999, Ferrari 2000; Gdmez et al. 2017).

All nodes were assigned a lognormal distribution as a
prior, as this model reflects the observation that evolutionary
divergence typically precedes both the first fossil record and
the complete establishmentofageographic event. Under this
perspective, speciation does not occur at the same time that
afossil appears or a barrier is formed; instead, these elements
represent only minimum age limits (Ho 2007). MCMC
analyses were performed with two independent runs of 10
million generations each, sampling every 1000 generations.
The convergence, stability, and adequate sampling of the
results were evaluated with Tracer v1.7.1 (Rambaut et al.
2018), applying a 25 % burn-in. The final phylogenetic tree
that included the divergence time intervals was generated
using TreeAnnotator v2.6.2 (Bouckaert et al. 2019). The
graphs were generated using the deeptime (Gearty 2025)
and ggplot2 (Wickham 2016) packages in R.

Species delimitation. Boundaries between species
within the X. spilosoma complex were evaluated using
three delimitation methods: the Automatic Barcode Gap
Discovery (ABGD), which is based on the identification
of a barcode corresponding to the natural discontinuity
between intraspecific (minor) and interspecific (major)
genetic variability. ABGD groups sequences according to
this discontinuity, without the need for an apriorihypothesis
about the number of species (Puillandre et al. 2012). The
Poisson Tree Processes (PTP) method, based on a maximum
likelihood model, assesses differences in substitution rates
between clades to detect clusters that are consistent with
putative species (Zhang et al. 2013), while the Generalized
Mixed Yule Coalescent (GMYC) method uses an ultrametric
tree to analyze branch lengths and determine whether
they correspond to intraspecific or interspecific processes
(Fujisawa and Barraclough 2013).

For ABGD, the previously calculated genetic distance
matrix was used. The configuration of the parameters was
(i) @ minimum intraspecific distance (Pmin) of 0.001 and a
maximum intraspecific distance (Pmax) ranging from 0.02 to
0.1; (ii) a Barcode Gap Width of 1.5; and (iii) the Jukes-Cantor
model (JC69); for the analysis, we used the command line in
the ABGD program (Puillandre et al. 2012). For PTP, we used
the ML tree generated with 100 000 MCMC generations
and a 10 % burn-in on the PTP web server (http://species.h-
its.org/). For GMYC, we used an ultrametric guide tree of
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the genus Xerospermophilus generated in MEGA X (Kumar
et al. 2018). A multiple method was applied usinga A =5
to fit the molecular-clock model and evaluated confidence
intervals (0 - 2); the model was performed using the splits
package in R (Ezard et al. 2009).

Niche modeling. In addition to the genetically analyzed
samples, we included 404 records of the presence of X
spilosoma and X. perotensis from GBIF (2024). These records
were organized according to the identification of terrestrial
ecoregions proposed by Olson et al. (2001) corresponding
to each clade defined in the phylogenetic analyses and the
delimitation of potential geographical barriers between
records: the Rio Grande between clades A and B, the Nazas
River between clades B and C, and a minimum convex
polygon for clade D, subsequently intersected with the
aforementioned ecoregions. A 6 km buffer was established
for each polygon delimited by these ecoregions and barriers.
Thisdistance was set given the low mobility reported for these
squirrels, whose mean dispersal distance is approximately
1.5 km (maximum 2.8 km) (Montero-Bagatella and Gonzélez-
Romero 2014). For clades A and D, the delimitation was
obtained directly with this procedure. For clade B, a northern
limit was established considering a 30 km buffer with respect
to the clade A polygon and applying a 21 km reduction to
the south. For clade C, a 21 km reduction to the north was
applied, maintaining the previous delimitation to the south,
which delineated a 30 km strip between the clades A, B, and
C polygons. Based on these polygons, records were classified
and grouped for modeling by clades, excluding those
located within the 30 km strips or outside the polygons; this
procedure was carried out in ArcMap v.10.5.

The ecological niche models were constructed using
the 19 bioclimatic variables available in the WorldClim
platform (WorldClim 2024), which are in raster format with
a 30 arcsec (1 km?) resolution. The models were generated
using the Maximum Entropy algorithm, implemented
in MAXENT v3.4.1 (Phillips et al. 2017). First, a general
model was constructed for each clade to identify the
most representative variables. To this end, we used the
contribution and permutation percentage table, as well as
the Jackknife test, both available in the MAXENT outputs, to
assess the relative importance of the explanatory variables.
Based on the variables selected by clade, a consensus was
performed, selecting those relevant to the four clades.

Subsequently, a Pearson correlation analysis was
performed on the previously selected variables. Highly
correlated variables (r > 0.85) were excluded to avoid
collinearity and reduce redundant information (Segurado

et al. 2006). We selected seven correlated variables with

a simpler environmental interpretation that do not
combine humidity and temperature data: BIO1 (mean
annual temperature, °C), BIO2 (mean diurnal temperature
range), BIO4 (temperature seasonality, %), BIO10 (mean
temperature of the warmest quarter, °C), BIO11 (mean
temperature of the coldest quarter, °C), BIO15 (seasonality
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Figure 1. Inferred phylogenetic tree for the Xerospermophilus spilosoma complex based on mitochondrial cytochrome b gene sequences (690 bp) using the Bl and ML methods (a).
Circles represent post-bootstrap probability values. (b) Results of species delineation analyses suggesting the presence of between 1 and 4 potential species within the X. spilosoma
complex. (c) Haplotype networks observed for the different populations analyzed; lines perpendicular to the main branches indicate the estimated number of evolutionary steps.

of precipitation, variability index), and BIO16 (precipitation
of the wettest quarter, mm).

Once the clade-based groups were defined, we
performed a 1 km spatial filtering of the final records (clade
A, 151; clade B, 72; clade C, 37; clade D, 37) using the Wallace
package (Kass et al. 2018). Then, the models for each group
were calibrated using the accessibility or mobility area
with 20 000 randomly selected background pixels. This
selection represents a hypothesis about the area to which
the species has or has had access to disperse (Barve et al.

al. 2017). In both cases, the overlap between niches was
quantified using Schoener’s-D index, whose values range
from 0 (completely discordant niches) to 1 (identical niches)
(Schoener 1970; Warren et al. 2008).

The niche similarity analysis assesses whether the
niches of two species are more similar than expected by
chance, accounting for the environmental context in which
they occur. In this test, a P-value < 0.05 suggests that niches
are more similar than expected by chance (Broenniman
et al. 2012). In contrast, in the niche equivalence test,

2011). Subsequently, a spatial partitioning of occurrence
data was performed to train and validate the models. The
method implemented was the chessboard, considering an
aggregation factor of 2 (Muscarella et al. 2014). Models with
linear, quadratic, and combined functions were fitted using
regulation multipliers between 0.5 and 3 (0.5 intervals),
selecting the best models according to the AIC (Burnham
and Anderson 2002). From these, binary (presence/
absence) distribution maps were generated according to
the biogeographic provinces of Olson et al. (2001).
Additionally, niches were characterized in a multivariate
space using a Principal Component Analysis (PCA),
performing the ordination through a correlation matrix and
using Mahalanobis distance approximations (Broennimann
et al. 2012). The degree of overlap or divergence between
the ecological niches of the candidate species was
evaluated using similarity and equivalence statistical tests
implemented in the ecospat v4.2.1 package (Di_Cola et

the observed D-value is compared to a null distribution
constructed from random reassignments of occurrences of
each species pair (Brown and Carnaval 2019). In this test, a
P-value < 0.05 indicates that the niches are more different
than expected by chance. For each test, 100 replicates were
performed to generate a null distribution of overlap scores,
which was compared to the observed values.

Results

The final alignment comprised 690 bp, with 146 variable
sites, 81 of which were parsimony-informative. The ML
and BI topologies were consistent, recovering the same
phylogenetic relationships and with support values greater
than 0.85 / 85 %, respectively. Four clades were identified
(Figure 1a): clade A includes sequences from the USA
populations (Kansas, Texas, and New Mexico); clade B, from
Arizona, USA, and Durango, Mexico; clade C only includes
sequences from San Luis Potosi, Mexico; finally, clade D
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Figure 2. Heatmap showing genetic distances (p) for the Xerospermophilus spilosoma complex. Interspecific genetic distances >0.10 are marked in pink, and intraspecific distances
<0.6 are marked in green, according to the scale. The table presents the genetic distances (p) between the clades and the species close to X. spilosoma.

includes sequences from the Perote valley in Puebla and
Veracruz, Mexico.

A total of 22 unique haplotypes were recovered, with
a haplotype diversity (Hd) of 0.989 and a nucleotide
diversity (Pi) of 0.04360. The haplotype network showed
four clusters corresponding to the clades observed in
the phylogenetic relationships (Figure 1c). These clusters
were separated by different numbers of mutational steps
(7-14), indicating clear genetic differences between
them. Likewise, a high number of mutational steps were
observed between the Arizona and Mapimi populations,
as well as between the New Mexico and Texas—Kansas
populations. In addition, several hypothetical haplotypes
were identified that connect the various clusters. On the
other hand, the genetic distances between . mexicanus
and the remaining sequences analyzed were low (10-11
%). In X. spilosoma, intrapopulation genetic variability
ranged from 1 % to 3 %, whereas interpopulation
variability ranged from 3 % to 6 % (Figure 2).

The estimated divergence times suggest that the X. spi-
losoma complex originated toward the end of the Miocene,
just over 5 Ma ago (Figure 3). Most divergence events are
concentrated between 3.5 and 1.5 Ma, with a marked
increase in the divergence process during the Pliocene.

Of the eight partitions generated in the ABGD analysis,
the three-species option yielded the highest statistical
significance (P = 0.007; Figure 1b). On the other hand, the
PTP analysis identified between 2 and 6 potential species;
however, only the four species with support values close to
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0.5 were considered. Finally, the GMYC clustering analysis
identified only one evolutionary entity, with a likelihood
ratio of 19.12 (P = 7.04e-05).

Ecological niche analyses using PCA indicate consistent
ecological segregation across most clades, except for
clades A and B, which show a smaller Mahalanobis distance
between their environmental centroids (Figure 4). The
overlap between clades is low to moderate, suggesting
possible ecological differentiation (Figure 5). In contrast,
clade A and clade B showed a partial differentiation with
some overlap (D = 0.23). The comparisons of clades
B-C and B-D showed the least separation, with overlap
approaching 1 in both comparisons (D = 0.92). The analysis
indicated no evidence of similarity greater than expected
by chance (P > 0.05), with the exception of clades B vs. D (P

Table 1. Results of the similarity and ecological niche equivalence analyses and their
interpretation. The asterisk (*) indicates a significant difference.

Comparison Similarity Equivalences Interpretation
(D) P-value (D) P-value
AvsB (0.07) 0.45 (0.03) 0.16 Dissimilar, equivalent
AvsC (0.01) 0.57 (0.005) 0.97 Dissimilar, equivalent
AvsD 0)1 (0) 1.00 Dissimilar, equivalent
BvsC (0.10)0.12 (0.07) 0.94 Dissimilar, equivalent
BvsD (0.21) 0.03* (0.14) 0.88 Similar, equivalent
CvsD (0)0.34 (0.06) 0.51 Dissimilar, equivalent
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Figure 3. Phylogenetic relationships of the Xerospermophilus spilosoma complex calibrated with temporal divergence estimates. Nodes represent lineage-divergence events, and
horizontal bars indicate 95% confidence intervals for estimated dates, scaled to the late Cenozoic era.

=0.03; Table 1). On the other hand, in the equivalence test,
none of the comparisons showed significant differences (P
< 0.05), indicating that the niche models generated for each
clade pair did not differ in their niches within the shared
environmental space, with D-index values ranging from 0
to 0.14 (Table 1).

Discussion
The results suggest that Xerospermophilus spilosoma
comprises a complex that hosts four evolutionarily
independent lineages, a hypothesis supported by clear
phylogenetic separation, consistent haplotype distributions
across environmentally segregated populations, and
differentiation of ecological niches among these lineages.
The estimated divergence times differ from those
proposed by Ferndndez (2012), who suggested that the

X. spilosoma complex is approximately 2.69 Ma old and
that the last common ancestor of the San Luis Potosi and
Perote lineages existed 0.74 Ma ago. In contrast, our results
indicate that the X. spilosoma complex emerged toward the
end of the Miocene, just over 5 Ma ago. Most divergence
events are concentrated between 3.5 and 1.5 Ma and are
consistent with the estimated ages of the geographical
barriers that influenced their diversification.

Clade A is the first to diverge, possibly favored by the
geographical barrier represented by the Rio Grande (Figure
6). This river, with a length of approximately 3,050 km,
flows through a large portion of the southwestern United
States, emptying into the Gulf of Mexico (Kelley 1952). It
was formed during the Late Miocene and Pliocene between
6.9 and 2.5 Ma (Morgan and Golombek 1984; Gamez et al.
2017), consistent with the divergence time estimated in
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Figure 4. Ellipses indicate 95 % confidence areas around the means of each group; comparison between clades: A) A and B; B) A and C; C) A and D; D) B and C; E) B and D; and

F) Cand D.

this work. The importance of this water body as a driver
of speciation processes has been documented for other
rodents, such as Chaetodipus and Eutamias (Sullivan 1985;
Neiswenter et al. 2019).

Clade B is distributed in the Trans-Pecos and Bolsén de
Mapimi, while clade C is represented by the population
inhabiting the Central Plateau in San Luis Potosi, Mexico.
These three zones are subregions of the great Chihuahuan
Desert, considered among the most diverse arid regions
worldwide (Dinerstein et al. 2000; Edwards et al. 2001).
The geological and climatic events of the Miocene and
Pliocene, along with the cyclical climatic changes of the
Pleistocene, had a profound effect on the genetic structure
and distribution of various species that live in this desert
(Raymo and Ruddiman 1992; Hafner and Riddle 2005; Loera

2011), a period estimated in the present work. This river
has been identified as a possible biogeographic barrier
for several species, including the rats Neotoma albigula
and N. leucodon (Edwards et al. 2001), the cactus mouse
Peromyscus eremicus (Riddle et al. 2000), gophers of the
genus Cratogeomys (Hafner et al. 2008), and the black-
tailed hare Lepus californicus (Lorenzo et al. 2021).

On the other hand, clade D is restricted to the Eastern
Basin, a high-mountain region, formed mostly during the
Pleistocene (<1.6 Ma) as part of the uplift of the Trans-
Mexican Volcanic Belt (Ferrari et al. 1999). The emergence
of this mountain range could have favored the divergence
of this clade, as documented for other rodents, such as
Dipodomys phillipsi and Peromyscus bullatus (Peterson et
al. 2000; Gonzalez-Ruiz et al. 2005; Sanchez-Cordero et al.

et al. 2017; Scheinvar et al. 2020). These events possibly
favored divergence between clades, which is supported
by the divergence times estimated in this study, similar to
the reports regarding the diversification between Cynomys
mexicanus and C. ludovicianus (Castellanos-Morales et al.
2016), as well as about the genetic patterns of Perognathus
and Chaetodipus mice (Riddle et al. 2000; Neiswenter
and Riddle 2010) and the differentiated distributions of
grasshopper mice of the genus Onychomys (Riddle 1995).
On the other hand, the divergence between clades
B and C could be related to the Nazas River, whose
formation is estimated to have occurred between mid-
and late Pliocene (Petersen 1976; Hafner and Riddle

2005; Fernéndez et al. 2012).

The interspecific genetic distances observed within the
X. spilosoma complex were slightly below the threshold
proposed by Baker and Bradley (2006) to recognize entities
as distinct species. However, these distances are similar
to those accepted for other closely related genera, such
as Spermophilus, when supported by additional evidence,
such as genetic structure and multilocus analysis (Simonov
et al. 2024). On the other hand, these divergence levels are
consistent with evolutionarily independent lineages, as
proposed for squirrel species of the genus Tamias, which
supports their possible recognition as distinct species (Ge et
al. 2014). The genetic diversity patterns found in X. spilosoma
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Figure 5. Comparisons between the environmental datasets of clades: A) A and B; B) A and C; C) A and D; D) B and C; E) B and D; and F) C and D, using a principal component analysis
(PCA), showing the distribution of populations in the space defined by the first two principal components (PC1 and PC2). Bars in the similarity test histograms represent null models, and

the red line represents the observed D-value.

in the present study reinforce this interpretation. A high Hd
= 0.99 and a considerable Pi = 0.04 were observed, which
are within the upper range reported for other rodents,
such as Neotoma mexicana (Hd = 0.97; Pi 0.03-0.05) and
Reithrodontomys chrysopsis (Hd = 0.99; Pi = 0.03) (Hernandez-
Canchola et al. 2021; Le6n-Tapia et al. 2023).

On the other hand, the different species delimitation
methods yielded inconsistent results, as they identified
different numbers of evolutionary entities. Such
discrepancies between methods are common, as each
approach is based on different assumptions and models
(Feijé_et al. 2019; Martinez-Borrego et al. 2023). The
partial concordance between ABGD and PTP suggests
some degree of genetic structure within X. spilosoma,
although the low resolution of GMYC could indicate
recent diversification or insufficient mitochondrial
differentiation, which warrants further analysis.

In addition, correspondence between genetic structure
and ecological niche modeling was observed. Clades A, C,
and D exhibited marked ecological differentiation, with
minimal or no niche overlap among them. In contrast,
we found evidence of partial or complete niche overlap
between clade B and all other clades. This overlap can be
explained by the niche breadth of clade B, associated with
the marked climatic heterogeneity of the Mapimi region,
which offers a wide range of environmental conditions
(Van Devender and Burgess 1985; Garcia-Arévalo and
Nocedal 2008). Although the overall pattern is a positive

relationship between niche breadth and geographic range
(Morin and Lechowicz 2013; Slatyer et al. 2013; Moulatlet
et al. 2025), niche breadth does not necessarily correspond
to a larger potential distribution area, since the conditions
that make up that niche may be unequally represented in
geography (Dallas and Ten Caten 2025). For example, clade
A has a potential distribution area of 637 867 km? more
than twice the estimated area for clade B (309 468 km?),
with a smaller environmental niche breadth; this highlights
the importance of the environmental heterogeneity of the
Mapimi region and is related to the distribution of clade B
(Garcia-Arévalo and Nocedal 2008).

Statistically, the ecological niche of clade B showed
similarity only with the niche of clade D. Niche similarity
between clades B and D could be explained by a non-
typical niche phylogenetic conservatism, in which species
maintain environmental similarities regardless of their
genetic distances (Wiens and Graham 2005: Losos 2008).
It is also possible that both clades are preserving a niche
close to a midpoint within the environmental space
occupied by the clade set (Wiens et al. 2010; Peixoto et
al. 2017). However, the geographical distance between
populations, genetic evidence, and the limited dispersal
capacity of squirrels suggest that clades B and D are distinct
groups despite their ecological proximity. The equivalence
test was not significant, implying that the compared niches
cannot be considered identical. This is consistent with
the fact that the equivalence test is more conservative
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Figure 6. Potential distribution map of phylogenetic clades A, B, C, and D generated by ecological niche modeling using the MAXENT algorithm. The colored areas indicate the
estimated environmental suitability for each clade, and symbols (triangle, square, rhombus, and circle) represent collection locations.

than the similarity test, as it assesses only whether two
niches are indistinguishable from actual locations, without
incorporating the surrounding environmental space
(Brown and Carnaval 2019).

Taken together, the lines of evidence discussed
here highlight the importance of considering both
evolutionary history and local ecological conditions in
order to understand diversification processes within the
X. spilosoma complex. The evidence from the present
study suggests that this complex can be divided into four
lineages. Since species delimitation should not be based
solely on absolute genetic distances, it is essential to
integrate other factors such as monophyly, phylogenetic
structure, and the gradual nature of allopatric speciation,
the pace of which may vary according to the ecological,
genetic, and geographical conditions involved (Carstens
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et al. 2013). In addition, it is important to recognize that
genetic divergence can advance even in the absence of
differentiated ecological selective pressure (Wiens 2004;
Nosil 2012).

In the case of clade D (X. perotensis), the data support
its recognition as an evolutionarily distinct lineage
characterized by geographic isolation, a unique genetic
structure, monophyly, and ecological differentiation from
the other clades. These elements support its recognition
as a sister species of X. spilosoma under the unified
species concept framework. However, inconsistencies
between the delimitation methods and the molecular
evidence, limited to a mitochondrial gene fragment,
preclude a definitive taxonomic conclusion. An alternative
interpretation is that X. perotensis is at an advanced stage
of the allopatric speciation continuum.




Although only a partial region (690 bp) of the cytochrome
b gene was analyzed, our results provide solid evidence
on genetic structuring and ecological differentiation in
squirrels of the genus Xerospermophyllus. A more complete
and robust reconstruction of the evolutionary history of this
taxonomic complex warrants the incorporation of additional
mitochondrial and nuclear markers, along with other types
of evidence (e.g., morphological, behavioral, or genomic). It
will also be essential to increase the sample size and include
additional populations, such as those inhabiting the Great
Tamaulipas Desert, which could not be included in this study
due to insufficient data. Finally, a major limitation in the
reconstruction of ecological niche models is the lack of biotic
data, such as ecological interactions, resource availability, or
predator pressure, which restricts the power of models to
more accurately discriminate between ecological niches of
different clades (Peng et al. 2025).

While the taxonomy of this squirrel complex is being
resolved, it is important to recognize that the identification
of genetically differentiated clades and distinct ecological
niches underscores the need to conserve each genetic
lineage as a significant evolutionary unit. This is particularly
relevant for the Perote population, the southernmost
and most isolated squirrel population, which, due to its
distinctive characteristics, is essential for preserving the
genetic and ecological diversity of this group.
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Appendix 1

Albino-Miranda et al.

Appendix 1. Geographical data of the specimens used and National Center for Biotechnology Information (NCBI) access number. In the species column, X = Xerospermophilus; | =

Ictydomys; and C = Cymomys.

Species Country State Latitude Longitude Collection ID NCBI # References
X spilosoma USA Kansas 37.872 -100.964 AF157885 Harrison et al. 2003
X spilosoma USA Kansas 35.084 -106.74 AF157911 Harrison et al. 2003
X spilosoma USA New Mexico 35.084 -106.738 JX047300 Fernandez 2012
X spilosoma USA Arizona 32.1080556 -109.555278 ACUNHC 566 PX673950 This study
X spilosoma USA Texas 30.0487278 -103.551506 ACUNHC 1376 PX673951 This study
X spilosoma USA Texas 31.8174644 -105.688989 ACUNHC 2180 PX673952 This study
X spilosoma Mexico Durango 26.523 -104.089 AF157845 Harrison et al. 2003
X spilosoma Mexico Durango 26.524 -103.929 AF157846 Harrison et al. 2003
X spilosoma Mexico Durango 2953720 624503 AGRO1 PX673953 This study
X spilosoma Mexico Durango 2950540 623514 AGRO3 PX673954 This study
X spilosoma Mexico Durango 2953955 624710 UNAM EY1194 PX673955 This study
X spilosoma Mexico Durango 2953955 624710 UNAM MVA103 PX673956 This study
X spilosoma Mexico San Luis Potosi 24,125 -100.925 DQ106853 Chumacero et al. 2006
X spilosoma Mexico San Luis Potosi 24.2 -100.901667 DQ106854 Chumacero et al. 2006
X perotensis Mexico Puebla 19.49 -97.489 AF157840 Harrison et al. 2003
X perotensis Mexico Puebla 19.49 -97.489 AF157948 Harrison et al. 2003
X perotensis Mexico Veracruz 19.587 -97.33 JX047301 Ferndndez 2012
X perotensis Mexico Puebla 19.49 -97.489 JX047302 Ferndndez 2012
X perotensis Mexico Veracruz 19.572 -97.383 JX047303 Fernandez 2012
X perotensis Mexico Veracruz 32.4166667 -97.8166667 AMSO01 PX673957 This study
X perotensis Mexico Veracruz 2161070 678473 AMS02 PX673961 This study
X perotensis Mexico Veracruz 2161070 678473 AMSO03 PX673960 This study
X perotensis Mexico Veracruz 2161070 678473 AMS04 PX673958 This study
X perotensis Mexico Veracruz 2161070 677627 AMS06 PX673959 This study
I mexicanus Mexico Edomex AF157848 Harrison et al. 2003
C ludovicianus Mexico Chihuahua JQ885590 Castellanos-Morales et al. 2014
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Puma (Puma concolor) and bobcat (Lynx rufus)
diet overlap in northern Chihuahua
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In carnivores, diet overlap is essential for understanding resource selection and competition in various environments. The objective of this
study was to compare the diet composition and overlap between puma (Puma concolor) and bobcat (Lynx rufus) in northern Chihuahua. We
expected greater overlap in disturbed environments. Puma and bobcat scats were collected from disturbed and non-disturbed environments
in northern Chihuahua. Percentage of occurrence, dietary overlap, and differences in diet composition were calculated using Chi-square
contingency tables. Twenty-three Puma concolor and 70 Lynx rufus scats were analyzed. The main prey consumed by both species were
rodents, followed by lagomorphs. The consumption of plant materials, cattle, other carnivores, arthropods, and bats was observed. In disturbed
environments, diet overlap was complete at two sites and partial at the other; in undisturbed sites, one site showed no overlap, and two
showed partial overlap. Both felines share similar diets in disturbed areas, with substantial overlap in common prey such as lagomorphs and
rodents. In undisturbed areas, their diets are more differentiated. In disturbed environments, their diets differed, and both species resorted to
unusual sources (chiropterans, plant materials, and garbage). Therefore, in disturbed environments of the desert region of northern Chihuahua,
changes in the diet of both felids occurred, along with increased competition for resources.

Key words: Competition; interspecific predation; percentage of occurrence; Pianka index; scat analysis; trophic plasticity.

La sobreposicidon de dieta entre carnivoros es clave para entender la selecciéon y competencia por recursos en diversos ambientes. El
objetivo fue comparar la composicién y la sobreposicidn entre la dieta del puma (Puma concolor) y el gato montés (Lynx rufus) entre ambientes
perturbados y no perturbados en el norte de Chihuahua. Se espera que la sobreposicién sea mayor en ambientes perturbados. Se colectaron
excretas de puma y gato montés en localidades perturbadas y no perturbadas del norte de Chihuahua. Se calculé el porcentaje de ocurrencia,
la sobreposicion de dieta y su diferencia por medio de tablas de contingencia de Chi-cuadrada. Se analizaron 23 excretas de pumay 70 de gato
montés. Los roedores y lagomorfos fueron los principales alimentos de ambas especies. Destaca el consumo de materiales vegetales, ganado
vacuno, otros carnivoros, artropodos y murciélagos. En los ambientes perturbados la sobreposicion de dieta fue completa en dos localidades
y media en la otra, en cambio, en los no perturbados fue media en dos localidades y no hubo en la otra. Ambos felinos tienen dietas similares
en los ambientes perturbados, con una sobreposicién importante por lagomorfos y roedores. En los ambientes perturbados, sus dietas fueron
diferentes, y ambas especies recurrieron a fuentes no comunes (quirépteros, materia vegetal y basura). Por lo tanto, en ambientes perturbados
de la zona desértica del norte de Chihuahua se presentaron cambios en la dieta de ambos felinos y mayor competencia por los recursos.

Palabras clave: Andlisis de excretas; competencia; depredacion interespecifica; indice de Pianka; plasticidad tréfica; porcentaje de ocurrencia.
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The diet of carnivorous species is not only influenced by the
abundance, composition,assemblage, energy requirements,
and type of prey available, but also by environmental factors
(Krebs et al. 1995; Carbone et al. 1999; Sinclair, 2003; Haswell
et al. 2017), interspecific competition (Litvaitis and Harrison

Cordero et al. 2008). Both carnivores share prey, but
differences in dietary preferences based on prey size,
energy intake, and abundance influence the feeding
patterns of each feline species (Hass, 2009).

Laundré et al. (2009) evaluated potential factors

1989; Hass 2009), and the hunting strategies of each species
(Herndndez 2015; Husseman et al. 2003). Dietary overlap
between species is useful for assessing interactions by
measuring the share or competition for food components
(Elbroch and Kusler 2018).

The puma (Puma concolor) and the bobcat (Lynx rufus)
coexist in North America from southwest Canada, in the
region bordering the United States southward through the
central part to the west coast and reaching northern and
central Mexico (Koehler and Hornocker 1991; Hass 2009),
with a 96 % geographical overlap in Mexico (Sdnchez-

influencing puma abundance in the Chihuahuan Desert by
comparing Sierra Rica and El Cuervo in Chihuahua. Sierra El
Cuervo, with more inhabitants and easier access, showed
a higher incidence of poaching, which could reduce
prey abundance and, consequently, impact the puma
population. Fischer et al. (2012) suggest that urbanization
has altered trophic dynamics in McCormick County,
South Carolina, by reducing top-down control (ecological
control exercised by predators over lower trophic levels,
regulating energy distribution) and increasing bottom-up
control (control generated by energy and nutrient flow
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PUMA AND LYNX DIETS IN CHIHUAHUA

over the number of primary consumers and predators that
the system can sustain) due to increased availability of food
produced by man.

In the desert region of northern Chihuahua, pumas and
bobcats interact despite increased productive activities
and land-use changes associated with urban growth, as
observed in other regions (Lewis et al. 2015; Parsons et al.
2019). Large-scale spatio-temporal analyses have revealed
that in carnivores, habitat preference exerts a greater
influence than interactions among them (Jensen et al.
2024; Suraci et al. 2025). In contrast, at local scales, evasion
patterns are evident, as in the case of bobcats that avoid
coyotes (Canis latrans), which in turn avoid bobcats and
pumas (Jensen et al. 2024). The co-occurrence of bobcats
with dominant carnivores such as pumas and wolves
(Canis lupus) is negatively affected by factors associated
with human activities; in contrast, its coexistence with
two subordinate carnivores, the red fox (Vulpes vulpes) and
the gray fox (Urocyon cinereoargenteus), depends mostly
on environmental factors such as precipitation and gross
primary production (Hubbard et al. 2022).

Studies on the puma diet report ungulates as the
primary prey (Prude and Cain Ill 2021; lacono et al. 2024;
Bender et al. 2025); on the other hand, bobcats mainly
prey on lagomorphs and rodents, with variable preference
(Romero and Cervantes 2014; Sdnchez-Gonzalez et al. 2018;
Draper et al. 2022). The diet overlap of bobcats and pumas
ranges between 0.22 and 0.56 according to the Pianka
index (Luna-Soria and Lopez-Gonzalez 2005; Hass 2009);
between puma and jaguar, it ranges from 0.46 (Flores-
Turdera et al. 2021) to 0.77 (Avila-Najera et al. 2018) and is
greater than 90 % between bobcat and coyote (Martinez-
Garcia 2014; Witczuk et al. 2015). This raises the question of
whether there are differences in the degree of diet overlap
of two feline species in disturbed (P) versus undisturbed
(NP) environments. The degree of overlap in disturbed
environments is expected to be greater. Therefore, the
objective of this study was to analyze the degree of diet
overlap of two feline species in disturbed and undisturbed
environments in northern Chihuahua.

Materials and methods

The study was conducted at eight locations in the
municipalities of Ascension and Judrez, in northern
Chihuahua. Disturbed environments (P) were defined as
sites with human activities, such as agriculture, materials
extraction, peri-urban areas, and the presence of garbage
dumps, while undisturbed sites (NP) lacked these
characteristics. P localities were West Sierra Judrez (WSJ),
UACJ campus (CU), Rancho Arantxa (RA), and Sierra Presidio
(SP); NPs were Rancho Blanco (RB) and Microondas Las
Dunas Microwave Antennas (MWD), in Ascension; Rancho El
Lobo (REL), and Southern Sierra Samalayuca (SSS; Figure 1).
The dominant landscapes in all of them are microphyllous
desert scrub and sandy deserts with stabilized dunes (INEGI
2021; Ledn-Pesqueira et al. 2024).
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Several field trips were carried out between May 2022
and July 2024. Cross-country transects measuring 2 to 4
km were established for scat collection, accounting for dirt
roads, cattle and wildlife trails, latrines, and paths between
hills. Scats were photographed in situ, placing a vernier
caliper on one side. These were identified based on the
criteria of Halfpenny and Biesiot (1986) and Aranda (2012).
The characteristics used to identify puma scats were large
size (20 to 30 cm long by 2 to 3.5 cm wide), cylindrical
shape, presence of constrictions, and characteristic odor.
The associated footprints measure 7 cm by 10 cm long, with
round, teardrop-shaped toe pads, absence of claws, and
metacarpal pads straight or concave on the front and with
three lobes on the back. In the case of bobcats, scats are
cylindrical, between 10 and 15 cm long and 1.5 to 2.5 cm
wide, with marked constrictions and a characteristic odor
that differentiates them from canid scat. The associated
footprints measured between 4.5 and 5 cm long by 4 to
5 cm wide. Although scats were determined using the
traditional approach, it should be noted that, ideally,
genetic determination of predators is the most convenient
method, as in the work of Torres-Romero et al. (2019). Scats
were transferred to the Laboratory of Ecology and Animal
Biodiversity (LEBA) of the UACJ, under the collection permits
SGPA/DGVS/02524/22 and SPARN/DGVS/05498/23.

Scats were processed according to Ackerman et al.
(1984). Vertebrate remains and hair were identified by
comparison with voucher specimens deposited in the
Scientific Collection of Vertebrates (CCV) of the UACJ (CHI-
VER 189-0806). Arthropods were identified using the key of
Eaton and Kaufman (2007), and plants were identified with
expert assistance.

The percentage of occurrence (PO) of each food type
for each predator was calculated in general and by locality
(Sperry 1933; Alanis-Herndndez et al. 2023). Only localities
with scat data for both feline species were compared. The
degree of overlap between environments and localities
was determined using Pianka’s index (Pianka, 1973), where
values close to 0 indicate no overlap and 1 indicates total
overlap of the diet (Krebs, 1999). Finally, the difference in
diet composition between the two felines in both P and
NP localities was evaluated using Chi-square contingency
tables (Siegel and Castellan, 1988).

Results

A total of 23 scats of Puma concolor and 70 of Lynx rufus from
eight sites were analyzed. Pumas living in P environments
(n = 9) consumed 24 food items in five categories, with an
average of 4.9 + 2.0 per scat (Table 1). In NP environments
(n = 14), they consumed 30 food items in three categories,
with an average of 4.9 + 1.9. Rodents had the highest
PO (50 %) in both environments (P and NP), followed by
lagomorphs (18.18 % and 19.10 %, respectively). Bobcats
in P environments (n = 51) consumed 54 food items in six
categories, with an average of 4.2 £ 1.5 per scat; mammals
recorded the highest PO (73.14 %), mainly composed of



Figure 1. Map of the localities sampled in northern Chihuahua.

rodents (55 %) and plant matter (14.36 %) (Figure 2). In NP
environments (n = 19), they consumed 41 food items in five
categories, with an average of 4.5 £ 2.0 (Figure 3). Mammals
accounted for 79.8 % of the diet, with rodents being the
most frequently consumed prey (60.7 %), followed by
lagomorphs (13.5 %). This study documented puma
consumption of wild ungulates in both environments. In
NP, we reported consumption of pronghorn (Antilocapra
americana) at one locality (MWD) and mule deer (Odocoileus
hemionus) at two localities (SSS and REL). In P environments,
mule deer consumption was recorded at one locality (CU);
also, livestock consumption was higher in P localities.
Equine consumption by pumas was documented at WSJ; in
NP localities, cattle consumption by pumas was recorded
in SSS. Bobcats fed on cattle, pigs, goats, and horses in WSJ,
and pigs were consumed in CU. In NP localities, bobcats fed
on cattle in MWD.

Both feline species preyed upon mesocarnivores. In P
localities, pumas preyed on northern fox (Vulpes macrotis);
in NP environments, they consumed northern fox, raccoon
(Procyon lotor), and skunk (Conepatus leuconotus and
Mephithis mephitis). For its part, bobcats inhabiting P
environments consumed foxes (Urocyon cinereoargenteus
and V. macrotis) and skunks (M. macroura and C. leuconotus);

Martinez-Calderas and Gatica-Colima

in NP, they preyed on northern fox and skunks (M. mephitis
and M. macroura). Consumption of dog (Canis lupus
familiaris) by puma in P environments was recorded in CU.

The consumption of uncommon food items was also
documented in P environments, where the puma (RA and
WSJ) and the bobcat (CU and RA) preyed on bats; pumas
also preyed on them in an NP location (REL). Arthropods
recorded a higher PO in bobcats than in pumas in both
environments, with insects yielding the highest PO values.
The consumption of birds and reptiles was low. As for
plants, pumas and bobcats consumed grasses, mesquite,
and cactus fruits and seeds in P environments; in NP, both
consumed grass, mesquite, and walnut fruits and seeds
of the genus Carya. Bobcats consumed unidentified plant
materials in both environments. Garbage consumption was
recorded in two P localities: CU (puma) and WSJ (bobcat).
Garbage materials consumed included food packaging
(@luminum and plastic) in both species and animal leather
(shoe and bag remains) in bobcats.

In general, Pianka’sindex between P and NP environments
showed high overlap values (0.71). As for the localities, P
exhibited partial overlap (0.50) in OSJ and complete overlap
(1.00) in CU and RA. NP localities showed partial overlap in
REL (0.57) and SSS (0.61), and low overlap in MWD (0.03).
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Table 1. Frequency of occurrence (FO) and percentage of occurrence (PO) of the diet of puma (Puma concolor) and bobcat (Lynx rufus) in northern Chihuahua, in disturbed (P) and
undisturbed environments (NP).

Puma concolor (n = 23) Lynx rufus (n = 70)

P NP P NP
Category/Components FO PO FO PO FO PO FO PO
Phylum Arthropoda
Insects 0 0 0 0 1.96 0.46 5.26 1.12
Coleoptera 0 0 0 0 17.65 417 10.53 225
Cerambycidae 1.1 227 0 0 0 0 0.00 0.00
Orthopthera 0 0 0 0 5.88 1.39 0.00 0.00
Solifugae 0 0 0 0 0 0 5.26 1.12
Class Reptilia
Unidentified reptiles 0 0 7.14 1.47 11.76 2.78 10.53 2.25
Sauria 0 0 0 0 1.96 0.46 5.26 1.12
Colubridae 0 0 0 0 0 0 5.26 1.12
Crotalus sp. 0 0 0 0 1.96 0.46 0.00 0.00
Class Aves
Unidentified birds 11.11 2.27 0 0 3.92 0.93 10.53 2.25
Class Mammalia
Antrozous pallidus 0 0 14.29 2.94 0 0 0.00 0.00
Tadarida brasiliensis 0 0 0 0 1.96 0.46 0.00 0.00
Myotis yumanensis 1mn 2.27 0 0 1.96 0.46 0.00 0.00
Eptesicus fuscus 1.1 227 7.14 147 0.00 0.00 0.00 0.00
Notiosorex crawfordii 0 0 0 0 1.96 0.46 0.00 0.00
Canis lupus familiaris 1.1 227 0 0 0.00 0.00 0.00 0.00
Urocyon cinereoargenteus 0 0 0 0 1.96 0.46 0.00 0.00
Vulpes macrotis 22.22 4.55 7.14 1.47 5.88 1.39 5.26 1.12
Procyon lotor 0 0 7.14 1.47 0.00 0.00 5.26 1.12
Taxidea taxus 0 0 0 0 1.96 0.46 0.00 0.00
Mephitis macroura 0 0 0 0 5.88 1.39 5.26 112
Mephitis mephitis 0 0 7.4 1.47 0.00 0.00 5.26 1.12
Conephatus leuconotus 0 0 714 1.47 1.96 0.46 0.00 0.00
Antilocapra americana 0 0 7.14 1.47 0.00 0.00 0.00 0.00
Odocoileus hemionus 11 2.27 28.58 5.89 0.00 0.00 0.00 0.00
Sus scrofa 0 0 0 0 7.84 1.85 0.00 0.00
Bos taurus 0 0 14.29 2.94 3.92 0.93 5.26 112
Capra aegagrus hircus 0 0 0 0 3.92 0.93 0.00 0.00
Equus caballus 33.33 6.82 0 0 5.88 1.39 0.00 0.00
Cratogeomys castanops 0 0 0 0 1.96 0.46 0.00 0.00
Geomys arenarius 0 0 714 1.47 1.96 0.46 0.00 0.00
Dipodomys merriami 3333 6.82 28.58 5.89 31.37 741 52.63 11.24
Dipodomys ordii 3333 6.82 14.29 294 17.65 4.17 15.79 337
Dipodomys spectabilis 0 0 0 0 7.84 1.85 5.26 1.12
Chaetodipus baileyi 0 0 0 0 1.96 0.46 5.26 1.12
Chaetodipus eremicus 33.33 6.82 35.71 7.35 9.80 2.31 10.53 2.25
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Chaetodipus hispidus 0 0 0 0 5.88 139 5.26 1.12
Chaetodipus intermedius 0 0 14.29 2.94 15.69 3.70 15.79 337
Perognathus flavescens 0 0 0 0 0.00 0.00 5.26 1.12
Perognathus flavus 0 0 0 0 1.96 0.46 10.53 225
Perognathus merriami 0 0 7.14 1.47 1.96 0.46 5.26 1.12
Neotoma albigula 55.56 11.36 50 10.29 43.14 10.18 31.58 6.74
Neotoma mexicana 0 0 0 0 1.96 0.46 0.00 0.00
Neotoma micropus 0 0 0 0 7.84 1.85 5.26 1.12
Onychomys arenicola 0 0 0 0 3.92 0.93 5.26 1.12
Onychomys leucogaster 0 0 0 0 1.96 0.46 10.53 225
Peromyscus difficilis 0 0 0 0 3.92 0.93 0.00 0.00
Peromyscus eremicus 3333 6.82 2143 4.41 9.8 231 10.53 225
Peromyscus leucopus 0 0 0 0 3.92 0.93 0.00 0.00
Peromyscus maniculatus 11.11 227 28.58 5.89 27.45 6.48 26.32 5.62
Peromyscus truei 0 0 0 0 1.96 0.46 5.26 1.12
Reithrodontomys fulvescens 0 0 7.14 1.47 7.84 1.85 15.79 3.37
Reithrodontomys megalotis 11.11 2.27 7.14 1.47 1.96 0.46 0.00 0.00
Reithrodontomys montanus 0 0 0 0 0 0 5.26 1.12
Sigmodon fulviventer 0 0 0 0 1.96 0.46 5.26 1.12
Sigmodon hispidus 0 0 0 0 3.92 0.93 10.53 2.25
Sigmodon ochrognathus 0 0 0 0 1.96 0.46 0 0
Ammospermophilus interpres 11.11 227 7.14 1.47 0 0 0 0
Otospermophilus variegatus 1.1 227 7.14 1.47 3.92 0.93 10.53 225
Xerospermophilus spilosoma 11.11 2.27 7.14 1.47 7.84 1.85 10.53 225
Lepus californicus 44.44 9.09 57.14 11.77 11.76 2.78 36.84 7.87
Sylvilagus audubonii 44.44 9.09 35.71 7.35 19.61 4.63 26.32 5.62
Plant materials
Unidentified plant material 0 0 0 0 23.53 5.56 10.53 2.25
Neltuma glandulosa 11.11 227 14.29 294 23.53 5.56 21.05 4.49
Poaceae 1.1 227 14.29 294 9.8 231 5.26 1.12
Cactaceae 0.93 0.03 0 0 3.92 0.93 0 0
Caryadillinoinensis 0 0 7.14 1.47 0 0 5.26 112
Yucca sp. 0 0 7.14 1.47 0 0 0 0
Garbage
Garbage 11.11 227 0 0 7.84 1.85 0 0
Total 489.78 100 485.71 100 423.49 100 468.42 100
Regarding the difference in diet composition between Discussion

puma and bobcat by locality using the Chi square method,
P environments showed a significant difference between the
diets of both felines (X°’=8.18, d.f.= 1, p=0.004), but notin NP
localities (X*=1.13,d.f=1, p=0.288). In these environments,
significant differences were observed in WSJ (X2 = 12.19, d.f.
=1, p =0.0005), but not in RA (X2 =0.37,d.f. = 1, p = 0.542)
and CU (X2 =2.28, df.= 1, p=0.132). In NP environments, no
differences were observed in MWD (X2 = 1.22,df. =1, p. =
0.269) and SSS (X*=0.79,d.f.= 1, p=0.3751), and a moderate
difference was recorded in REL (X*=3.67,d.f.= 1, p=0.055).

In both environments (P and NP), bobcats mainly preyed
on rodents, while pumas mainly consumed rodents and
lagomorphs. It is known that bobcats prefer lagomorphs
and rodents (Leopold and Krausman 1986; Delibes and
Hiraldo, 1987; Hass, 2009; Lépez-Vidal et al. 2014; Romero
and Cervantes 2014; Sanchez-Gonzalez et al. 2018; Draper
et al. 2022). On the other hand, it has been documented
that pumas consume more ungulates in North America
(Iriarte et al. 1990; Pierce et al. 2000; De la Torre and De la
Riva 2009; Hass, 2009). Mule deer (Odocoileus hemionus)
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Figure 2. Percentage of occurrence of prey in the diet of puma (Puma concolor) and bobcat (Lynx rufus) in disturbed localities (P) in northern Chihuahua.

is the most consumed prey type by pumas in desert areas
(Leopold and Krausman, 1986; Koehler and Hornocker,
1991; Cunningham et al. 1999; Logan and Sweanor, 2001;
Prude and Cain Ill, 2021), although when its availability
is low, the consumption of smaller prey increases by up
to 50 %, consistent with the results of the present study.
This finding confirms the plasticity of the puma diet and
reaffirms its ability to persist in environments where its main
prey decreases or is harder to capture, so its consumption
becomes energetically non-profitable, as the cost and
risk associated with its search and capture outweigh the
benefits obtained (Leopold and Krausman 1986; Yafez et

(Dellinger et al. 2018), so pumas may consume pronghorn
in that area and leave evidence in MWD. Bernard et al. (2023)
reported pronghorn consumption in northern New Mexico,
which they considered infrequent. As for the consumption
of cattle and domestic animals, we found evidence of puma
having low consumption of horses in P environments and
cattle in NP localities, as previously reported for the species
(Ackerman et al. 1984; Luna-Soria and Lépez-Gonzdlez,
2005; Rosas-Rosas et al. 2008; De laTorre and De la Riva 2009;

Amador-Alcalad et al. 2013; Pefia-Mondragdén and Castillo

2013; Palmeira et al. 2015; Cassaigne et al. 2016; Prude and

Cain 11l 2021; Guerisoli et al. 2021; Mesler and Jones 2022;

al. 1986; Iriarte et al. 1991; Donadio et al. 2010; Villepique et

lacono et al. 2024; Racero-Casarrubia et al. 2024). Cattle,

al. 2011; Pia 2013; Bender et al. 2025).

Regarding pronghorn consumption, there are norecords
ofthisspeciesintheMWDarea, soitisnecessarytodetermine
whether there are nearby populations. Distribution areas
have been documented in the southwestern part of the
municipality of Ascension (Carreén-Hernandez and Lafén-
Terrazas 2014), 100 km from MWD. It has been reported that
seasonal puma activity areas can be greater than 100 km?

104 THERYAVol.17(1):99-110

pig, goat, and horse consumption by bobcats is similar to
that previously reported, being low relative to other food
components (Aranda et al. 2002; Pefha-Mondragén and
Castillo 2013; Prude and Cain 111 2021).

Predation of mesocarnivores by both felines was
common. The species consumed were similar to those
reported by Hass (2009) and Prude and Cain Ill (2021),
who recorded seven and 11 carnivores in the puma diet,




Martinez-Calderas and Gatica-Colima

Figure 3. Percentage of prey occurrence in the diet of puma (Puma concolor) and bobcat (Lynx rufus) in undisturbed localities (NP) in northern Chihuahua.

respectively. Bobcat is known to have consumed gray fox
and skunks (Hamilton and Hunter 1939; Litvaitis et al. 1981;
Story et al. 1982; Trevor et al. 1989; Fedriani et al. 2000; Farias
etal. 2005; Hass 2009; Draper et al. 2022; Landry et al. 2022).
We found no studies reporting bobcat consumption of
northern foxes or tlalcoyotes (Taxidea taxus). In addition,
puma consumption of dogs (Canis lupus familiaris) in a P
environment was recorded in CU. It has been reported that
pumas commonly hunt dogs (Mazzolli, 2009; Buttler et al.
2014) and occasionally consume them (Farrell et al. 2000;
Leberg et al. 2004; Villepique et al. 2011; Prude and Cain llI
2021, Racero-Casarrubia et al. 2024). In Arizona, Wroe and

Wroe (1982) reported bats preyed upon by bobcats. As
for puma, only the presence of a non-identified bat has
been reported in puma scats collected at Manu National
Park, Peru (Emmons 1987). We found no reports of pumas
hunting bats in North America, which is notable given the
rarity of this prey, characterized by low energy value and
great difficulty of capture due to its size and behavior.
This occasional consumption suggests a high degree of
opportunism and trophic plasticity in pumas, particularly
in disturbed or ecologically changing environments,
where traditional resources may be limited. Regarding
plant materials, several authors mention that felines do
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not consume plants because they are obligate carnivores
(Morris et al. 2002; Sanquist and Sanquist 2002; Verbrugghe
and Hesta 2017), since, despite their being present, they are
not considered typical components in the diet of this group,
so they have not been described or quantified. However,
the opposite has been the subject of recent discussions
(Yoshimura et al. 2020; Yoshimura et al. 2021). For example,
Yoshimura et al. (2021) mention that in 361 studies of feline
diet, only 37 % mention the frequency of occurrence of
plant materials, and 7.3 % simply report plant material.
Few studies include plant materials in the diet composition
(Ackerman et al. 1986; Rocha-Mendes et al. 2010; Montalvo

A high dietary overlap was observed between bobcats
and pumas in both environments, according to the Pianka
index, indicating that both species share a large number of
prey species. In P localities (CU and RA), both felines occupy
nearly identical food niches, indicating high competition in
these environments. In contrast, food overlap in NP localities
was either low (MWD) or moderate (REL and SSS), suggesting
that the species occupy very different niches, possibly due
to differences in available resources or ecological strategies,
which could indicate greater specialization or ecological
segregation. This finding is similar to that observed by Hass
(2009) in Tucson, Arizona, where an intermediate level of

etal. 2020), and grasses (Ackerman et al. 1986; Gomez-Ortiz
et al. 2011; Villepique et al. 2011; Franck and Farid 2020)
consumed by pumas. For bobcat, several authors report the
use of plant material, mainly grasses, mesquite fruits, Yucca,
and cacti in desert environments (Litvaitis and Harrison
1989; Mckinney and Smith 2007; Lépez-Vidal et al. 2014).
The presence of pecan nuts (Caryaillinoinensis) in feline scatin
NP environments is associated with nearby farms cultivating
this crop, a growing agricultural activity that is transforming
the Chihuahuan desert. It is suspected that fiber-rich plant
materials (unidentified plant material and grasses) were
consumed seeking to improve digestion or excrete parasites
(Yoshimura et al. 2021), while the consumption of fruits
(cactus seeds, mesquite Neltuma sp., Yucca sp., and Carya)
was due to diploendozoochory, a phenomenon that has
been observed in both bobcats (Rubalcava-Castillo et al.

diet overlap between pumas and lynxes was reported. The
observations in both studies are consistent with the idea
that competition between species varies with regional
ecological conditions and resource availability, which favors
less competition between the two species and results in less
overlap in their diets. The compositional difference analysis
revealed that the diets of puma and bobcat are similar in P
environments, possibly because environmental disturbances
affect prey availability and force both feline species to
consume resources not commonly observed in studies of
dietsinundisturbed environments.In contrast,in NP localities,
the diets of puma and bobcat were different. It is likely that,
in NP environments, each species has access to more varied
and specific food resources, leading to differences in their
feeding habits (Foster et al. 2010; Khorozyan et al. 2015;
Ferretti et al. 2020). Therefore, studies examining predator

2021) and pumas (Sarasola et al. 2016).

Insects, reptiles, and birds have been documented
in the bobcat diet in Mapimi (Lépez-Vidal et al., 2014),
with insects at a lower percentage than that recorded
in the present study. The puma consumed birds in NP
environments, as previously documented (Prude and
Cain 1ll 2021). The presence of garbage in feline scat has
been documented in P environments. In these areas,
where the natural habitat of wild felines is altered by
urban expansion, felines may lose their territories and
be forced to adapt to anthropic environments (Bateman
and Fleming 2012; Robins et al. 2019; Bartolucci et al.
2020; Riley et al. 2021), such as clandestine or unregulated
garbage dumps, which are common in these areas. Under
such conditions, these felines may resort to alternative
food sources, including food scraps, garbage, and other
anthropogenic wastes (Baruch-Moro et al. 2014; Plaza and
Lambertucci 2017; Handler et al. 2020; Larson et al. 2020).
Although garbage and anthropogenic organic waste
are not commonly consumed by wild felines (Riley et al.
2021), human pressures and environmental pollution can
increase the probability of felines encountering these
wastes. Plastic consumption by puma is similar to that
reported by Bartolucci et al. (2020), who identified two
types of polyethylene. The consumption of garbage and
human waste could harm the health of wild species, as it
has been shown to affect domestic animals (Jensen and
Nolte 2008; Prabhakar et al. 2012; Paras et al. 2017).
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and prey diets and abundances are necessary to evaluate the
importance and interactions among the mechanisms that
may be shaping trophic dynamics in urban and suburban
areas (Fischer et al., 2012).

In conclusion, prey consumption by bobcats and pumas
differs between undisturbed and disturbed environments.
There is substantial overlap in the diets of puma and bobcat
in disturbed environments of northern Chihuahua, with
greater consumption of common prey such as lagomorphs
and rodents, highlighting competition between these
felines. Competition for resources in areas near human
settlements forces these felines to resort to unconventional
food sources, such as garbage and plant materials. The
findings in the present study underscore the importance
of considering ecological interactions and the impact of
habitat alteration on the diet and behavior of felines in
desert environments.
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El murciélago vampiro comun (Desmodus rotundus) es un quirdptero de la familia Phyllostomidae, subfamilia Desmodontinae que habita
las regiones tropicales y subtropicales de América Latina, se alimenta exclusivamente de sangre y es el transmisor de la rabia paralitica
bovina, enfermedad que produce grandes pérdidas econémicas en la ganaderia. Las poblaciones de D. rotundus, aumentaron después de
la introduccion del ganado europeo al Continente Americano por los colonizadores, ya que represent6 una fuente de alimento abundante y
de facil acceso para estos quirdpteros. Con el aumento del tamano de las poblaciones de D. rotundus consecuentemente los casos de rabia
paralitica bovina incrementaron. En los afios setenta del siglo XX, se iniciaron estudios en México para controlar las poblaciones de D. rotundus,
que derivaron en varios métodos basados en el envenenamiento con anticoagulantes. Durante més de 50 afios en América Latina se ha
utilizado este método; sin embargo, estudios actuales han demostrado que el uso de anticoagulantes quimicos no ha reducido los casos de
rabia paralitica bovina, por el contrario, han aumentado y avanzado geograficamente. En esta revisién se analizan los métodos de control de
las poblaciones de D. rotundus que se han utilizado tradicionalmente, se discute su eficacia y se mencionan alternativas de investigacién que
podrian contribuir a resolver el problema, limitando a su vez el uso de métodos letales.

Palabras Clave: Desmodus rotundus, murciélago hematdgafo, rabia, uso de anticoagulantes, vampiricida

The common vampire bat (Desmodus rotundus) is a bat of the family Phyllostomidae, subfamily Desmodontinae that inhabits the tropical
and subtropical regions of Latin America. It feeds exclusively on blood and is the vector of bovine paralytic rabies, a disease that causes
significant economic losses in livestock farming. D. rotundus populations increased after the introduction of European cattle to the Americas
by colonizers, as these represented an abundant and easily accessible food source for these bats. With the increase in D. rotundus populations,
cases of bovine paralytic rabies consequently increased. In the 1970s, studies began in Mexico to control D. rotundus populations, leading to
several methods based on anticoagulant poisoning. This method has been used in Latin America for over 50 years. However, current studies
have shown that the use of chemical anticoagulants has not reduced cases of bovine paralytic rabies; on the contrary, they have increased and
spread geographically. This review analyzes the traditional methods used to control D. rotundus populations, discusses their effectiveness, and
proposes alternative research approaches that could help solve the problem while limiting the use of lethal methods.

Keywords: Culling with anticoagulants, Desmodus rotundus, hematophagous bat, rabies, vampiricide
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Es un hecho que el mito sobre los vampiros existia mucho
antes de que se identificara plenamente en el Continente
Americano a los uUnicos mamiferos que se alimentan
exclusivamente de sangre: los murciélagos hematéfagos,
comunmente llamados vampiros. Estos peculiares
quirépteros, originales de la regién Neotropical, dieron
sustento real al mito ancestral del vampirismo reforzando el
hecho de que Dracula se transforma en murciélago vampiro
(Stoker 1987; Rydell et al. 2018; Nowik-Niton 2024). Estos
murciélagos se distribuyen desde el norte de México hasta

el norte de Argentina en América Latina y en algunas islas
del Caribe. Estan representados por tres géneros, cada
uno con una sola especie: el vampiro comun Desmodus
rotundus; el vampiro de patas peludas Diphylla ecaudata y
el vampiro de puntas de ala blancas Diaemus youngi. Estos
tres géneros pertenecen a la subfamilia Desmodontinae,
dentro de la familia Phyllostomidae (murciélagos con hoja
nasal) (Hermanson y Carter 2020).

Diphylla eucaudata es un murciélago hematéfago
especializado en consumir sangre de aves grandes,
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CONTROL DEL VAMPIRO COMUN

Figura 1. Caracteristicas del vampiro comun: A) aspecto general; B) labio en forma de V con incisivos afilados; C) pulgar desarrollado con tres cojinetes.

aunque ocasionalmente también puede consumir
sangre de mamiferos. D. youngi se especializa también en
consumir sangre de aves. El vampiro comun, D. rotundus
(Figura 1), consume principalmente sangre de mamiferos
aunque puede hacerlo de cualquier vertebrado; es la mas
conocida y estudiada de las tres especies de vampiros y
la de mayor distribucién y abundancia. D. rotundus, posee
una importancia capital en la economia ganadera de
la regién Neotropical, por lo que esta especie ha sido el
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blanco del desarrollo de los metodos de control a lo largo
de la historia. En la época prehispanica, las evidencias
apuntan a que las poblaciones del vampiro comun no
eran muy numerosas (Vos et al. 2011). Posteriormente,
con la introduccién del ganado en América por
los conquistadores, las poblaciones de D. rotundus
aumentaron, ya que el ganado introducido representa
una fuente de alimento ilimitado y de facil acceso para
estos animales (Paniagua Pérez 2021).
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Figura 2. Vaca cebu con mordeduras de murciélago vampiro escurriendo sangre en la espalda a nivel de la joroba y el cuello. Fotografia tomada en Yucatan, México.

Segun las crénicas, la llegada del ganado europeo al
Continente Americano comenzd con el segundo viaje de
Cristébal Coldn en 1493. Durante este viaje, introdujo vacas,
terneros, cabras, ovejas, cerdos y pollos desde las Islas
Canarias al archipiélago de las Antillas, especificamente
a la isla de La Espafnola (actual Republica Dominicana
y Haiti), donde se establecieron los primeros criaderos.
Posteriormente, alrededor de 1510, estos criaderos se
extendieron a las islas de Puerto Rico, Jamaica y Cuba.
Cuando el conquistador Hernan Cortés desembarcé en
lo que hoy es México, solo llevaba consigo 14 caballos y
algunos cerdos. Fue después de la conquista del Imperio
Azteca (1521) que se trajo ganado al continente para su
crianza y explotacion. A partir de entonces, se generé todo
un complejo de explotaciones ganaderas, que inicialmente
abarcaron algunas zonas tropicales y subtropicales y las
tierras altas semidridas de la meseta central del actual
México, desde donde se expandieron a las provincias del
norte. Durante tres siglos, la Nueva Espafia (México) abarcéd
gran parte de lo que hoy es Estados Unidos, desde Texas
hasta California (Brand 1961; Villegas Durdn et al. 2001).

Cabe mencionar que, en el siglo XIX, la introduccién del
ganado cebu en América (Gémez 1972), resistente a las
condiciones tropicales y subtropicales, consolidé aun mas
la ganaderia en las areas de distribucion del murciélago
vampiro comun, favoreciendo ademas el aumento de sus
poblaciones (Figura 2).

Por otro lado, el establecimiento de grandes hatos de
ganado en América Latina y el consecuente aumento de D.
rotundus, puso de manifiesto lo que en la actualidad se cono-
ce como la Rabia Paralitica Bovina (RPB). Esta afeccion, es una
de las enfermedades zoonéticas con mayor impacto sobre el
ganado en América Latina, con unamortalidad dedecenasde
miles de cabezas de ganado por afio y que se estima, genera
pérdidas econdémicas anuales de 30 millones de ddlares en
la region neotropical del continente americano, sin contar
la subnotificacion que existe y los gastos recurrentes en
vigilancia, diagndstico y prevencién (Benavides et al. 2020).
Esta enfermedad es causada principalmente por las variantes
V3,V5 y V11 del virus de la rabia que circulan en D. rotundus
transmitidas al ganado, mediante la saliva, por la mordedura
de esta especie de quirdpteros (Velasco Villa et al. 2006).
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La RPB, antes del siglo XX no se reconocia ni se
relacionabaconlarabiaclasicaconocidaancestralmenteen
el Viejo Mundo, en donde era transmitida principalmente
por canidos (perros, lobos, zorros, etc.). La enfermedad
transmitida por los vampiros, y que actualmente sabemos
que es la rabia, en América Latina se conocia con
diferentes nombres, por ejemplo, en México se le conocia
como “derriengue”, “gliila” y “tronchado”; en Brasil, “peste
das cadeiras”, en Colombia y Costa Rica «hueguera» o
«renguera» etc., y se le atribuyeron diferentes causas como
intoxicaciones u otras afecciones que se relacionaban
con la pardlisis y los sintomas nerviosos que el virus de
la rabia les provoca (Aréchiga-Ceballos et al. 2022). Fue
hasta el siglo XX que el investigador brasilefio Lima en
1934, vinculé esta afeccién con la rabia ancestral conocida
en el Viejo Mundo, hecho verificado posteriormente por
Pawan en 1936. En la revision histérica realizada por Vos
et al. (2011), es evidente que los primeros exploradores
europeos del Continente Americano reportaron la
existencia del murciélago vampiro comun, ya que
algunos de ellos y sus animales fueron mordidos por estos
murciélagos y en algunos casos, la mordedura se relacioné
con la presentacion de una enfermedad mortal, pero sin
los detalles que permitieran confirmar, con certeza, que se
trataba de la rabia. Dada esta falta de informacién, resulta
dificil cuantificar las pérdidas causadas por la rabia al
inicio del establecimiento de la ganaderia europea en AL.

Actualmente, se sabe que las principales especies
afectadas son los bovinos. Para tener una idea de la
proporcién de las especies afectadas, en un analisis
realizado por Ortega-Sanchez et al. (2022) en México
se reportaron un total de 3,469 brotes en el periodo de
2010-2019, de los cuales el 89.1% ocurrieron en bovinos,
4.3% en caballos, 1.5% en ovinos, 0.6% en cabras, 0.01%
en cerdos.

Una de las lineas de investigacion que se iniciaron en
México en los afios setenta del siglo pasado, fue el estudio
de diversos métodos para controlar las poblaciones de
murciélagos vampiros, con miras a reducir los casos de RPB
en el ganado. Desde aquel entonces, hace mas de medio
siglo, en América Latina, se siguen aplicando las técnicas
de control de las poblaciones de los vampiros generadas
en aquella época. Sin embargo, la RPB no se ha logrado
controlar de forma consistente (Hayes y Piaggio 2018;
Kraker-Castafieda etal. 2024; Olave-Leyva et al. 2025a). Cabe
sefalar que las investigaciones en la materia después de los
anos setenta y ochenta del siglo pasado han sido escasas.
Es hasta el siglo XXI que han salido nuevas publicaciones
analizando el problema (Osorio-Rodriguez y Saldaia-
Vézquez 2019; Avila-Vargas et al. 2025). En esta revision,
se exponen los métodos que se utilizan tradicionalmente
en AL para el control de las poblaciones de los vampiros,
argumentando su eficacia a la luz de investigaciones
recientes y se mencionan alternativas de investigacion que
podrian contribuir a resolver el problema, limitando a su
vez el uso de métodos letales.
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Historia de los métodos de control

del D. rotundus

Aunado a la leyenda negra que cargan los murciélagos,
en la primera mitad del siglo XX, los productores, al ver
afectado su ganado por las mordeduras de los vampiros y
constatar que estos quirdpteros pueden provocar la RPB a
sus animales, han tratado de exterminarlos con practicas
drésticas, poco selectivas y perjudiciales, que no han sido
avaladas por la comunidad cientifica. Se emplean gases
venenosos para fumigar los refugios, insecticidas como el
dicloro difenil tricloroetano (DDT), dieldrin y malathion,
entre otros. También se utilizan explosivos o se incendian
o saturan los refugios con humo, provocando asi dafos
ecoldgicos irreversibles y la destruccion de especies
concomitantes benéficas, ademas de contaminar el
ambiente con sustancias toxicas que afectan también al ser
humano y otras especies (Lord 2018). Estas practicas a toda
costa deben de combatirse y ser eliminadas.

Los estudios cientificos encaminados al control del
vampiro comun se iniciaron en México en los afos
setentas del siglo XX en el extinto Instituto Nacional
de Investigaciones Pecuarias (INIP), bajo el auspicio del
Gobierno Mexicano, de la Agencia para el Desarrollo
Internacional de Estados Unidos (Agency for International
Development, U.S. Department of State, USAID) y de la
Organizacion de las Naciones Unidas para la Alimentacion
y la Agricultura (FAO, Food and Agriculture Organization
of the United Nations). En ese entonces investigadores
pioneros como Raul Flores Crespo, Samuel Linhart, Clay
Mitchell y otros, realizaron las primeras observaciones
sobre el comportamiento del vampiro comun. Sus
estudios revelaron varias caracteristicas de los murciélagos
hematéfagos como su comportamiento social y habitos
alimenticios, que permitieron el disefio de varios “métodos
selectivos” dirigidos al control del vampiro comun.
Estos métodos se basan en la utilizacién de sustancias
anticoagulantes como la difenadiona y la warfarina que se
utilizan habitualmente para matar roedores.

En un principio se propuso localizar los nichos donde
se instalan las colonias de vampiros adentro de los refugios
y untar el veneno anticoagulante con una brocha en las
paredes del nicho (Flores Crespo et al. 1974a). Sin embargo,
lo laborioso del método y su evidente inespecificidad
condujeron al estudio de otras alternativas. Los estudios
y resultados obtenidos condujeron a tres tratamientos o
variantes de la utilizacidon de anticoagulantes para matar a
los murciélagos hematdéfagos:

i) Tratamiento tépico de D. rotundus con pomada
vampiricida (anticoagulante en un vehiculo como la
vaselina). Esta técnica aprovecha la conducta de limpieza o
acicalamiento individual y social de los vampiros y consiste
en capturar algunos animales a los cuales se les unta la
pomada vampiricida en su cuerpo (principalmente en
el dorso) y después se les libera (Figura 3). Los animales
tratados con la pomada regresan a sus refugios y durante
las sesiones de acicalamiento social, ingieren el veneno
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Figura 3. Aplicacion tépica de veneno anticoagulante a un vampiro capturado. A) Tarro con vampiricida comercial; B) aplicacion del producto en el lomo de un vampiro (D.

rotundus) capturado.

ellos mismos y sus congéneres, provocando multiples
muertes en la colonia (Linhart et al. 1972).

ii) Tratamiento tdpico del ganado mediante cobertura
con pomada vampiricida de las mordeduras recientes de
vampiros. Esta metodologia aprovecha el habito observado
que tiene el vampiro comun de alimentarse varias veces del
mismo animal y en las mismas heridas, de esta manera al
cubrir la herida con anticoagulante, al regresar, el vampiro
ingiere el veneno y muere. Una variante de este método es
untar una linea de pomada vampiricida a lo largo del dorso
del animal, desde la cabeza hasta la cola con la intencién
de que los vampiros ingieran el veneno al morder al animal
tratado (Flores Crespo et al. 1976).

iii) Tratamiento sistémico de los bovinos con
anticoagulante. Esta metodologia consiste en inyectar
por via sistémica (intramuscular o intrarruminal) a los
bovinos expuestos al ataque de vampiros, con dosis bajas
del anticoagulante (dosis supuestamente inocuas para los
bovinos, pero letales para los vampiros). De esta manera,
los vampiros que se alimentan de la sangre del bovino
tratado sucumbiran al efecto del anticoagulante cuando
se alimentan de ese animal, mientras que los bovinos
tratados sobreviven ya que se demostré son menos
susceptibles al efecto letal del anticoagulante (Flores
Crespo et al. 1979).

De los tres métodos mencionados, el mas eficaz y letal,
es el primero (tratamiento i); es decir, el procedimiento
topico de algunos D. rotundus capturados con la pomada
vampiricida, seguido de su liberacién. Las otras opciones,
tienen un efecto parcial y de menor duracién, ademas de ser
dificiles de implementar en un gran nimero de cabezas de
ganado (Avila-Vargas et al. 2025). Desde su implementacién
en los afnos setenta del siglo XX (hace mas de medio siglo)
hasta nuestra época, podemos decir que este es el método
mas utilizado en las campanas oficiales de varios paises.

Eficaciadelosmétodos utilizados tradicional-
mente para el control de D. rotundus

Es evidente que las practicas para el control de las
poblaciones de D. rotundus que como se menciond, no
tienen fundamento cientifico, como la fumigacién de los
refugios con veneno, la utilizacion de explosivos, fuego
o humo en los mismos, a toda costa deben de evitarse y
combatirse por los dafios irreversibles que pueden provocar
a la biodiversidad y al medio ambiente.

El tratamiento ii (cobertura de mordeduras de vampiro
con pomada vampiricida o distribucién del anticogulante
en la piel del ganado), si bien puede tener cierta utilidad en
hatos pequefios, presenta la dificultad de ser muy laborioso
cuando se trata de un numero grande de animales y la
reduccién de la poblacién de vampiros es limitada. Hay
evidencia de que el tiempo de contacto de los vampiros
con su presa es muy variable y solo el 40% de los animales
recibirian dosis letales del anticoagulante mediante esta
metodologia (Avila-Vargas et al. 2025).

El método iii (tratamiento sistémico de los bovinos
con anticoagulante) también presenta la limitacion de
ser laborioso cuando se trata de un nimero grande de
animales, sin embargo, es necesario considerar que, aunque
se utilicen bajas dosis de anticoagulantes supuestamente
no letales en los bovinos, no se han hecho estudios a
fondo de las consecuencias de este farmaco en la salud del
ganado y en el consumo de los productos de este (Flores
Crespo et al. 1979; Avila-Vargas et al. 2025). Los tratamientos
i y iii, en ocasiones se aplican a individuos que presentan
multiples mordeduras ya que se ha observado que los
vampiros muerden mas a ciertos individuos en un hato;
por ejemplo, se ha demostrado que individuos de la raza
Holstein son mas atacados que los de las razas Brahaman
o Charolais, probablemente porque los primeros tienen
un temperamento docil y tranquilo, mientras que los de
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las dos razas restantes tienen un temperamento nervioso
(Flores Crespo et al. 1974b; Arellano-Sota 1988). Dado que
el método i (tratamiento tépico con pomada vampiricida
de individuos capturados y su liberacién) ha sido el método
mas utilizado y fomentado en los paises afectados desde
hace mas de medio siglo, en adelante nos centraremos en
analizar eficacia de este método.

En primer lugar, es necesario sefialar que, a pesar de
su continua aplicacién en muchos ranchos y regiones de
América Latina, hasta el momento no se puede asegurar que
este método sea una solucién 100% eficaz para controlar
la RPB ya que no se tiene noticia de una eliminacion
permanente de la enfermedad a largo plazo, en drea alguna
con o sin la aplicacién de anticoagulantes (Viana et al. 2023;
Avila-Vargas et al. 2025). Por el contrario, si ha constado que
la enfermedad actualmente se presenta en regiones en las
que no habia sido reportada con anterioridad, tal es el caso
del Estado de Tamaulipas en México, en donde no se habia
reportado la RPB hasta la ultima década del siglo XX (1994),
se presentd un brote en el municipio de Aldama (Martinez-

(Felis catus), felinos silvestres, algunos mustélidos, sin contar
aves rapaces tanto diurnas como nocturnas, y necréfagos
especializados como los zopilotes (Coragyps atratus), etc. De
esta manera, los animales que consumen a los murciélagos
muertos o moribundos podrian resultar también dafados
indirectamente con el anticoagulante (Pérez-Rivero et al.
2014; Avila-Vargas et al. 2025).

Por otro lado, poco se sabe del efecto, en el sistema
inmune de los murciélagos, de dosis no letales de los
anticoagulantes utilizados para envenenarlos. Es ldgico
pensar que, durante las sesiones de acicalamiento, no
todos los animales de la colonia van a consumir la misma
cantidad del anticoagulante, algunos consumiran dosis
suficientemente letales, pero otros solo alcanzaran dosis
subletales que no llegan a matarlos, pero que si pueden
alterar su sistema inmune, haciéndolos mas susceptibles
a contraer infecciones como la rabia y facilitando asi la
diseminacion de la enfermedad (Avila-Vargas et al. 2025).

Al mismo tiempo, estudios realizados por Streicker et
al. (2012), han demostrado que la aplicacion tépica del

Burnes et al. 1997).

Posteriormente, la RPB ha ido avanzando hacia el norte
reportdndose nuevos casos en municipios mas cercanos a
la frontera con EE. UU. (Hayes y Piaggio 2018; Olave-Leyva
et al. 2025a). En el futuro, debido al cambio climético,
se predice que la RPB podria llegar hasta EE. UU. (Hayes
y Piaggio 2018; Olave-Leyva et al. 2025b). Es importante
sefalar como lo hacen Avila-Vargas y colaboradores
(2025), que todos los estudios de la eficacia del uso de los
anticoagulantes se basan en constatar la reduccién de las
mordeduras del vampiro en el ganado y ninguno en la
reduccion de los brotes de rabia o de su avance territorial
(Osorio-Rodriguez y Saldaha-Vazquez 2019). Viana et al.
(2023) demostraron, mediante un modelo bayesiano, que
el envenenamiento selectivo de vampiros por un periodo
de dos afios no logré reducir la propagacion de la RPB al
ganado, a pesar de reducir la densidad de la poblacion
de estos quirdpteros. La secuenciacién completa del
genoma viral y los anadlisis filogeogréficos demostraron,
ademas que el sacrificio antes de la llegada del virus
puede ralentizar la propagacion espacial del virus, pero el
sacrificio dentro de un brote establecido la acelera, lo que
sugiere que los cambios en la dispersion de murciélagos
inducida por su envenenamiento promueven la invasion
viral (Viana et al. 2023).

Si bien con el método i (aplicacion toépica del
anticoagulanteenelcuerpodelosmurciélagoshematéfagos),
se nota una rdpida y drastica reducciéon de las mordidas
en el ganado por los vampiros (>95%) (Flores Crespo et al.
1976), actualmente se han sefalado algunos inconvenientes
de utilizar esta metodologia. En primer lugar, si bien, este
método parece tener cierta especificidad, los animales
muertos o debilitados por la accién del anticoagulante
podrian convertirse en presas faciles de predadores como los
mapaches (Procyon lotor), el cacomixtle (Bassariscus astutus),
el coati de nariz blanca (Nasua narica), los gatos domésticos
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anticoagulantes a murciélagos capturados y su liberacion
(tratamiento i), afecta sobre todo a los individuos adultos
dejando una poblacién juvenil que en principio es mas
susceptible a contraer la rabia, lo que propiciaria el
avance del virus al encontrar una poblacién sin barreras
inmunoldgicas que lo detengan (Figura 4) (Streicker et al.
2012; Aréchiga-Ceballos et al. 2019; Ledn et al. 2021). Eliminar
a todos los vampiros de una colonia establecida en un lugar
donde existe una oferta alimentaria de facil acceso (vg. zonas
ganaderas en regiones tropicales y subtropicales de América
Latina), puede provocar que individuos de colonias aledafas
se desplacen, ocupen y aprovechen el nicho que antes
ocupaban los murciélagos envenenados, estableciendo una
nueva colonia con individuos diferentes (Scheffer et al. 2014;
Huguin et al. 2018; Benavides et al. 2020; Gongalves et al.
2021; Rocke et al. 2023). De esta manera, si alguno o varios de
los individuos que se instalen en el nicho desocupado estan
infectados con rabia, la enfermedad ocuparia esta nueva
area junto con los nuevos invasores.

Finalmente, en ocasiones al aplicar el anticoagulante
topico, ha sucedido que se confunde al vampiro comun
con otras especies de la familia Phyllostomidae y en lugar
de afectar al vampiro comun, se afectan a otras especies
que son benéficas (Uieda y Goncalves de Andrade 2020;
Kraker-Castafieda et al. 2024); es por ello que, es importante
mencionar que esta metodologia, en caso de utilizarse, sea
aplicada por personal especializado capaz de diferenciar las
especies benéficas de los murciélagos hematéfagos.

Otras alternativas

Desde que surgieron los métodos de control de las
poblaciones de vampiros con anticoagulantes, se sefald
que la aplicacién de los métodos de envenenamiento
de las poblaciones de vampiros no era suficiente para
detener la RPB y que estos métodos siempre deberian
de acompafarse con la vacunacidon de los animales
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Figura 4 . Vampiros juveniles abandonados tras la muerte de vampiros adultos que fueron tratados con vampiricida.

susceptibles (vg. ganado expuesto) contra la rabia. Como
lo demostré Pasteur en sus estudios sobre la rabia “el
control de la enfermedad humana requiere intervenir en su
reservorio animal” (Sdnchez-Paz et al. 2025).

Raul Flores Crespo (1978), en una monografia sobre el
control de los murciélagos hematéfagos, hace las siguientes
observaciones: “Debido a que la Gnica manera de prevenir la
enfermedad es la vacunacion, se recomienda hacerlo aun en
aquellas zonas donde se efecttia el control de los vampiros; esto
se debe a que no es posible, en el mejor de los casos, eliminar a
todos con los métodos de control. Si se deja de vacunar, siempre
existird la posibilidad de que se presente la enfermedad y, por
tanto, se recomienda insistentemente que se vacune contra la
rabia a todos los bovinos...". Desde aquel entonces, se hizo
patente la imposibilidad de exterminar literalmente a D.
rotundus en un drea determinada, sin causar estragos graves
colaterales al medio ambiente y por ende al ser humano.
Por otro lado, el hecho de que la RPB no haya disminuido
de manera considerable aplicando el envenenamiento
0 no de vampiros y que por el contrario haya avanzado
geograficamente a zonas antes indemnes (Hayes y Piaggio
2018; Avila-Vargas et al. 2025; Olave-Leyva et al. 2025a;
Olave-Leyva et al. 2025b) nos obliga continuar con el estudio
de otras alternativas que a continuacién mencionamos.

La vacunacion oral contra la rabia

En la primera mitad del siglo XX después de que se redujo
drasticamente la rabia del perro mediante la vacunacion
de estos animales, en Europa Occidental constataron que
los brotes de rabia en ganado y excepcionalmente en el
humano lo provocaban ya no los perros, sino los zorros
rojos (Vulpes vulpes), animal muy dificil de vacunar en su
medio ambiente silvestre. Entonces, se pretendié controlar
larabia mediante el sacrificio de estos carnivoros silvestres,
del mismo modo que actualmente se pretende eliminar
la RPB mediante el sacrificio de D. rotundus en América
Latina (Freuling et al. 2013). De esta manera en muchos
lugares, el gobierno ofrecia recompensas por cada cola de
zorro rojo presentada a las autoridades o hasta se llevaban
a cabo campanas sistematicas de envenenamiento de
estos animales.

Pronto se dieron cuenta que el exterminar al zorro rojo
de un area, no eliminaba la rabia de ese lugar. En efecto, se
observé que los lugares en donde los zorros habian sido
eliminados, se repoblaban rapidamente por zorros de areas
aledanas en donde no se habian exterminado y después de
un tiempo, el problema recomenzaba (Jiguet 2020).

Por otro lado, se tenia la experiencia del éxito de la
vacunacion de los perros para la eliminaciéon de la rabia
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en esta especie ya que después de que se aplicaron las
campanas de vacunacioén, ningun caso de rabia transmitida
por este animal doméstico se habia presentado ya. En los
anos setenta del siglo pasado, un grupo de investigadores
europeos se planted la posibilidad de vacunar a los zorros
rojos en su dmbito silvestre. En aquella época esto parecia
una utopia. Sin embargo, el Profesor Paul Pierre Pastoret
y sus colaboradores en Bélgica, iniciaron el trampeo de
ZOrros rojos, su vacunacién con jeringas como se hace
con los perros y su liberacién al medio ambiente (Brochier
et al. 1985). El trabajo que esto implicaba era realmente
extenuante y no se lograba una inmunidad de rebafio de
80% de los individuos.

La confluencia de varios factores hicieron posible la
vacunacion de los zorros en su ambito natural; la ingenieria
genética permitid la obtencién de vacunas resistentes
al medio ambiente y con base a los estudios hechos por
Georges Baer, que en aquel entonces trabajaba en el CDC
(Centers for Diseases Control and Prevention) en EE. UU., se
vio la posibilidad de aplicar la vacuna por via oral, en lugar
de tenerla que aplicar con una jeringa por via parenteral
como se hace con los perros (Baer 1988). Una vacuna oral,
hecha con un virus resistente al medio ambiente, unida a
un cebo atractivo para los zorros fue la solucién (Wiktor
et al. 1988). Los zorros ingerian la vacuna, atraidos por el
cebo, logrando con esto la inmunizacién, con la ventaja
de que los animales vacunados defendian su territorio e
impedian la introduccién invasores que podian portar la
enfermedad. Es decir, se creaban barreras inmunes en ese
territorio que impedian la introduccién del virus. Utilizando
estas vacunas orales de nueva generacién, gran parte de
la poblacion de zorros rojos de Europa occidental ha sido
vacunada a la fecha, con la consecuente eliminacién de la
rabia en aquella regién (Brochier et al. 1991).

Esta historia de éxito animo a nuestro grupo a especular
gue podria hacerse lo mismo con el murciélago hematéfago
o vampiro. En los afos ochenta del siglo pasado, con
un proyecto financiado por la Unién Europea, nuestro
grupo que incluia investigadores del Instituto Nacional de
Investigaciones Pecuarias (INIP), del Instituto Mexicano del
Seguro Social (IMSS) de México, y de la Universidad de Lieja
(Bélgica), inicié la vacunacién de vampiros con la misma
vacuna que se utilizaba para vacunar a los zorros en Europa
occidental (lavacunaV-RG Raboral). La vacuna se aplic6alos
vampiros principalmente por la via oral, y posteriormente se
ensayaron otras vias como la escarificaciéon y por medio de
aerosoles. Los resultados obtenidos fueron positivos ya que
se logré, en todos los casos, la produccién de anticuerpos
y la protecciéon de los animales contra el virus patégeno
(Aguilar-Setién et al. 1998; Aguilar-Setién et al. 2002).

Estos experimentos no estuvieron exentos de criticas,
arguyendo que era un “despropdsito vacunar al enemigo”.
A pesar de dichas criticas, otros autores como Almeida y
su grupo en Brasil encontraron también ventajas en esta
aproximacién e iniciaron por su parte experimentos de
vacunacion de vampiros (Almeida et al. 2008). Mas aun,
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actualmente un grupo de investigacion en Wisconsin,
EE. UU. en el que participa la investigadora mexicana
Elsa Cardenas Canales, ha reiniciado experimentos de
vacunacion de vampiros con miras a establecer una
metodologia eficaz que impida la circulacién del virus de la
rabia en estos animales (Cardenas-Canales et al. 2022).

La mayoria de las publicaciones sobre la vacunacién de
los vampiros, estan basadas en la administracion por la via
oral, aplicada como los venenos anticoagulantes de manera
topica en el cuerpo del animal para que lo consuman
durante sus sesiones de acicalamiento; ademas se ensay6
la aplicacién de la vacuna por medio de aerosoles (Aguilar-
Setién et al. 2002; Tesoro Cruz et al. 2006; Tesoro Cruz et
al. 2008). Se considerdé que la vacuna en aerosoles podria
aplicarse enlos refugios, como se hacia con los insecticidas y
venenos, por medio de un nebulizador. Este sistema tendria
la ventaja de que no solamente los vampiros quedarian
vacunados contra la rabia, sino también los quirdpteros
benéficos que conviven con los vampiros en el mismo
refugio, creando barreras mas amplias contra el virus. Sin
embargo, debemos tomar en cuenta que la aplicacion de
los aerosoles en refugios seria una tarea laboriosa y ser
consciente de que se requieren mas investigaciones al
respecto.

Vacunas que se diseminan automaticamente
entre los murciélagos vampiros.

Tomando en cuenta las experiencias expuestas sobre la
vacunacion de los vampiros, Griffiths et al. (2023) proponen
el desarrollo de una “vacuna transmisible” que puede
definirse como una biotecnologia emergente que ofrece
perspectivas para eliminar patégenos de poblaciones
silvestres. En dichas vacunas se recurre a la ingenieria
genética para modificar un virus no patégeno de origen
natural, «vector viral», para que sea capaz de expresar
antigenos de virus patdgenos, conservando al mismo
tiempo su capacidad de transmision y su inocuidad
(Griffiths et al. 2023). En concreto, Griffiths et al. (2023),
proponen utilizar un virus herpes llamado Desmodus
rotundus betaherpesvirus (DrBHV) que se disemina muy
facilmente entre los vampiros sin afectar a otras especies de
murciélagos. A este virus DrBHV se le harian modificaciones
genéticas para que expresara los antigenos del virus de la
rabia. De tal manera que los vampiros que se infecten con
este virus construido quedarian inmunizados contra el virus
de la rabia y al mismo tiempo transmitirian el virus a sus
congéneres susceptibles que conviven con ellos, los que a
su vez quedarian también vacunados y con la posibilidad
de contagiar el virus a otros individuos que no lo han
adquirido, diseminando la vacuna entre la poblacién.

Lord (2018) recomendé la vacunacién de los vampiros
como un método adecuado para el control de la rabia
porque: “.. un animal inmunizado es doblemente valioso
porque no solo no puede mantener la epizootia, sino también
porque contintia ocupando su nicho de habitat, defendiéndolo
de los invasores...". Incluso si se controla la rabia vampirica,




existe la posibilidad de que el virus encuentre otras especies
de murciélagos susceptibles.

La ventaja de la vacunacién de una especie determinada
es que se forman barreras inmunes que impiden la
circulacion del virus en esa especie y como no se mueren, la
poblacion permanece activa y defiende su territorio contra
otros individuos, enfermos o susceptibles que pretendan
apropiarse del area.

La cuestion que queda pendiente en este caso es la de
que los individuos vacunados ya no podran trasmitir la
RPB, pero si podran seguir mordiendo al ganado, lo cual
dependiendo de la dptica y los estudios que se hagan,
podria ser una situacién tolerable por los ganaderos. La
investigacidn constante de estos temas tendra la respuesta.

Vacuna contra la saliva del murciélago
vampiro

Delpietro et al. (2021) publicaron un estudio en el que
inmunizaron, con saliva de D. rotundus, grupos de ovejas
previamente mordidas por murciélagos vampiro y grupos
no mordidos, con el objetivo de inducir la produccién de
anticuerpos contra los anticoagulantes salivales de estos
animales (anticoagulantes salivales de vampiro, ASV). Esto
sugiere la utilidad de desarrollar un método alternativo
para el control de los murciélagos vampiro, basado en la
induccion de una fuerte respuesta inmunitaria del ganado
contra los ASV, mediante la clonacion y expresiéon de
antigenos vacunales salivales «antivampiro» apropiados.
En teoria, este producto biolégico podria promover la
coagulaciéon sanguinea en el ganado inmunizado (debido
a su resistencia adquirida contra el ASV), lo que dificulta la
ingestion adecuada de sangre por parte del murciélago, asi
como su correcta digestion y eliminacion del exceso de agua.
Se supone que seria dificil para los murciélagos vampiros
sobrevivir alimentandose de presas altamente resistentes
al ASV, considerando las severas demandas que impone la
hematofagia, como la gran cantidad de sangre que deben
ingerir (en promedio 20 ml diarios por individuo) para cubrir
sus necesidades energéticas. Efectivamente, estos autores,
reportan acumulacion de sangre en el sistema digestivo de
los animales que se alimentaron de las ovejas inmunizadas.

Control de las poblaciones de vampiros
mediante reduccion de la fertilidad.

Actualmente se sabe que los métodos letales no siempre
son eficaces, debido a la necesidad de aplicaciones
repetidas, cubriendo amplias areas geogréficas (Massei
et al. 2024). Hay que agregar el dafo que los venenos
utilizados pueden producir en otras especies silvestres o
domésticas, incluyendo al ser humano y al medio ambiente
en general. De hecho, en varios paises el uso de estos
venenos anticoagulantes esta siendo cada vez mas limitado
(Jacob y Buckle 2017; Quinn et al. 2019). El control de la
fertilidad de las plagas de mamiferos, que actua reduciendo
los nacimientos mas que aumentando la mortalidad, se
ha propuesto como una alternativa menos drastica que

Aguilar-Setién et al.

los métodos letales, con la ventaja de que una poblacién
regulada mediante la disminucién de su fertilidad podria
mantener mejor el equilibrio ecolégico.

En el caso de los vampiros, como se ha mencionado,
sacrificar a los individuos de una colonia con cualquiera
de los métodos mencionados, si bien reduce el nimero de
ganado mordido, podria propiciar el avance de un brote
de rabia al promover el desplazamiento de las colonias y
generar poblaciones de juveniles susceptibles (Streicker et
al. 2012; Scheffer et al. 2014; Huguin et al. 2018; Aréchiga-
Ceballos et al. 2019; Benavides et al. 2020; Goncalves et al.
2021; Ledn et al. 2021; Rocke et al. 2023).

Bajo esta Optica, Investigadores del IMSS y de la
Universidad Auténoma Metropolitana (UAM) en México, a
principios de este siglo experimentaron con la utilizacién
del coumestrol aplicado por via oral, como anticonceptivo
para vampiros. El coumestrol es un fitoestrégeno que
se une a receptores estrogénicos en los mamiferos y
al cual se le ha encontrado la capacidad de reducir la
testosterona y de afectar la espermatogénesis en ratas.
Los resultados obtenidos al administrar el coumestrol
por via oral a vampiros adultos, indicaron que provoca
alteraciones histolégicas relacionadas con infertilidad, en
los testiculos de los machos y en los ovarios de las hembras
tratados (Pérez-Rivero et al. 2004; Pérez-Rivero et al. 2014).
El coumestrol podria administrarse a los vampiros, del
mismo modo que se hace para administrarles los venenos
anticoagulantes, sin embargo, esto deberia ser realizado
por personal altamente capacitado, que pueda diferenciar
a las especies benéficas del vampiro comun.

Otras posibilidades

Desde tiempos ancestrales, las barreras fisicas como
mallas, mosquiteros, redes, etc., se han utilizado y se han
revelado eficaces para proteger a las personas contra las
mordeduras de D. rotundus. Lord (2018), menciona que
los indios Guajira de Venezuela, usan en sus hamacas
cubiertas de tejido que los protegen de las mordeduras
de los vampiros y de los piquetes de los mosquitos (Lord
2018). El uso de mosquiteros en las ventanas y orificios
de las habitaciones humanas ha demostrado también ser
una medida eficaz para protegerse (Lord 2018). Este tipo
de proteccién solo podria implementarse en el caso de
animales estabulados. La mayoria del ganado en las zonas
tropicales y subtropicales deambula libremente en los
potreros, por lo que este tipo de barreras resultaria dificil de
implementar en dichas condiciones.

Hace tiempo se pens6 que se podia proteger al ganado
de las mordeduras de los vampiros manteniendo los
corrales iluminados ya que son nocturnos y prefieren no
salir con luna llena (Flores Crespo et al. 1972). Sin embargo,
el vampiro comun es un mamifero sumamente adaptable
e inteligente y si bien en un principio el nimero de
mordeduras puede disminuir en un corral iluminado, con el
tiempo estos animales se acostumbran a la luzy regresan a
su actividad normal.
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Un campo que se ha abordado poco y que puede ser
prometedor, es el estudio de sustancias atrayentes o
repelentesenelcasodeD.rotundus.En el caso derepelentes,
Thompson et al. (1982) demostraron que los vampiros
rechazan la sangre a la que se le ha agregado quinina.
Recientemente, Ziegler y Behrens (2021) demostraron la
sensibilidad de los receptores al sabor amargo de la quinina
en los vampiros. Un repelente a base de quinina podria ser
utilizado para proteger al ganado.

Consideramos que es muy importante destacar que
actualmente controlar la rabia transmitida por vampiros
representa un reto complejo en la medida de que se corre
el riesgo de que cualquier acciéon desencadene un mayor
numero de agresiones a humanos y a fauna silvestre,
favoreciendo brincos a otras especies o “spill overs” que
pueden dar lugar a casos humanos o en animales que
normalmente no son parte de la dieta habitual de D.
rotundus como el caso de brote de rabia en capibaras
(Hydrochoerus hydrochaeris) en Brasil (Mori et al. 2024;
Soinski et al. 2024). En este sentido, nuestro grupo fue
testigo en los afnos setenta del siglo pasado, como en
Tejupilco, Estado de México, zona que se dedicaba a la
cria de ganado que cambié repentinamente al cultivo de
la cafa de azucar por razones econdmicas, se empezaron
a reportar aumentos de mordeduras de vampiro en las
personas como consecuencia de la ausencia repentina de
su presa habitual: los bovinos (datos no publicados). Hay
que considerar también las adaptaciones a otras especies
que puedan actuar como reservorios del virus, conocidos
como “host switchings”, dando lugar a la emergencia de
nuevas especies reservorio. Por lo que las acciones deben
ser analizadas a nivel local y no asumir que la misma
estrategia va a ser eficiente a lo largo de la distribucion de
D. rotundus (Gongalves et al. 2021).

Conclusiones

El método de control del vampiro comun que
tradicionalmente se han utilizado en América Latina es
principalmente la aplicaciéon tépica del ungiiento en los
murciélagos vampiros, el cual contiene un anticoagulante
que en un principio (desarrollado en la década de los
anos 70) contenia warfarina y actualmente contiene
bromadiolona.

En México, el control de las poblaciones de murciélagos
vampiros se realiza de acuerdo con la Norma Oficial Mexicana
NOM-067-Z00-2007, “Campana nacional para la prevencién
y control de la rabia en bovinos y especies ganaderas’, en
donde se especifica que los productos vampiricidas que
se utilicen en la campana deben ser los elaborados con
sustancias anticoagulantes. Sus vehiculos, dosificacion, asi
como el mismo vampiricida deben contar con el registro
oficial de la Secretaria de Agricultura y Desarrollo Rural
(SADER). Su aplicacion se realiza conforme a la via de
administracién y dosis indicada por el laboratorio fabricante.

La aplicacion tépica del ungiiento con anticoagulante
en D. rotundus requiere de esfuerzo de muestreo en la
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captura de los especimenes, ya sea en corral y/o en refugio,
y no se ha logrado demostrar que esta practica reduzca los
casos de RPB; empero si se ha demostrado puede tener
implicaciones en el mantenimiento y diseminacién del
virus rabico al perturbar y modificar las poblaciones de los
murciélagos (Streicker et al. 2012).

Las alternativas al empleo de anticoagulantes que se
han descrito y que ameritan mayor estudio son:

i).- La vacunacién de los vampiros contra la rabia. Se
ha demostrado que la vacunacién de los animales que
transmiten la rabia que son al mismo tiempo reservorios y
vectores del virus (domésticos: perros y gatos o silvestres:
zorro, mapache, coyote, etc.), ha sido una medida eficaz
para reducir los casos de rabia en el ser humano y en los
animales domésticos (Maki et al. 2017; Rupprecht et al.
2024). Los resultados obtenidos a la fecha en diversos
estudios indican que igualmente, se podria lograr la
reduccién de los casos de RPB mediante la vacunacion
de D. rotundus (Cérdenas-Canales et al. 2022; Knuese et al.
2025). Los esfuerzos de investigacién en este sentido son
promisorios y deben continuarse.

ii).- Vacunacién del ganado susceptible con la saliva de D.
rotundus (ASV). En teoria, esta vacuna, podria promover la
coagulacién sanguinea en el ganado inmunizado (debido
a la neutralizaciéon de los anticoagulantes que contiene
la saliva de los vampiros). Se supone que seria dificil para
los murciélagos vampiros sobrevivir alimentdndose de
presas resistentes al ASV. Sin embargo, hay que considerar
que, el esfuerzo de vacunar al ganado contra la ASV seria
el mismo que vacunarlo contra la rabia, que es a la fecha
la medida mas eficaz para reducir los casos de RPB. Si se
llegara a comprobar que la vacunacién del ganado contra
la ASV influye disminuyendo las poblaciones de D. rotundus,
entonces, la vacunacién simultanea del ganado contra el
virus de la rabia y contra la ASV tendria, en principio, doble
beneficio. Son necesarios mas estudios al respecto.

iii).- Métodos que reduzcan la fertilidad de D. rotundus.
El control de la fertilidad de las plagas de mamiferos que
actia reduciendo nacimientos mas que aumentando la
mortalidad, se ha propuesto como una alternativa menos
drastica que los métodos letales. Esta medida tendria
la ventaja de que una poblacién estable, mantiene un
equilibrio ecolégico y defiende su territorio contra intrusos
gue pueden estarinfectados. Serian necesarios mas estudios
que nos permitan conocer como se podria mantener
una poblacién estable administrando compuestos que
reduzcan la fertilidad, determinar las dosis, la via de
administracion y disefiar métodos de evaluacién de la
reducciéon de la misma.

iv).- El estudio de repelentes o atrayentes de D. rotundus.
Este es un tema escasamente abordado y que valdria la
pena explorar; se sabe que sustancias amargas como la
quinina hacen que los vampiros rechacen la sangre que
se les ofrece y existen pocos sobre las feromonas que
podrian atraerlos. La utilidad de las sustancias repelentes es
evidente, los atrayentes podrian por otro lado utilizarse para




alejar o desviar a los murciélagos hematéfagos del ganado
y aplicar otros métodos de control y/o de vacunacién en
donde se congreguen por el atrayente.

El control de la rabia paralitica en especies ganaderas
se ha realizado a través de la aplicacion de la vacuna
antirrabica, las cuales deben ser las elaboradas con virus
activo modificado o con virus inactivado. Su aplicaciéon se
realiza conforme a la via de administracién y dosis indicada
por el laboratorio fabricante, el manejo de la vacuna debe
realizarse por un Médico Veterinario Zootecnista, certificado
para tal actividad. La vacunacién antirrabica de las especies
ganaderas es obligatoria en el area enzodtica y en aquellos
lugares donde se presenten casos clinicos y/o confirmados
por laboratorio (NOM-067-Z00-2007); la vacunacién se
debe aplicaral 100% de los animales y se debe establecer un
calendario y las estrategias de vacunacién para mantener la
inmunidad de hato.

La aplicacion de la vacuna a todos los animales
de un hato, representa un esfuerzo arduo y oneroso,
principalmente en las condiciones de potrero de las
explotaciones de la regién Neotropical de América Latina.
Esfuerzo que muchos ganaderos no estan dispuestos a
realizar como medida preventiva. Cuando si lo realizan,
suele ser hasta que se presenta un brote, momento en el
ya son evidentes las muertes del ganado por RPB, lo que
disminuye la efectividad de la vacunacion. Por ello, es
necesario fomentar en las explotaciones la cultura de la
prevencion.

El estudio de las interacciones de las poblaciones de
los mamiferos y su medio ambiente es complejo, mas aun
si agregamos factores que influyen en la epidemiologia
de las enfermedades. Desafortunadamente, los recursos
para estudiar y experimentar en estas interacciones se han
reducido considerablemente en la actualidad. Esperamos
que los tomadores de decisiones, hoy como ayer, apoyen
mas investigaciones en este sentido.
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